
Document Clustering into an unknown number
of clusters using a Genetic Algorithm

A. Casillas1, M. T. González de Lena2, and R. Mart́ınez2

1 Dpt. Electricidad y Electrónica
Universidad del Páıs Vasco
arantza@we.lc.ehu.es

2 Dpt. Informática, Estad́ıstica y Telemática
Universidad Rey Juan Carlos

{m.t.gonzalez,r.martinez}@escet.urjc.es

Abstract. We present a genetic algorithm that deals with document
clustering. This algorithm calculates an approximation of the optimum
k value, and solves the best grouping of the documents into these k
clusters. We have evaluated this algorithm with sets of documents that
are the output of a query in a search engine. The experiments show
that, most of the times, our genetic algorithm obtains better values of
the fitness function than the well known Calinski and Harabasz stopping
rule, and takes less time.

1 Introduction

Clustering involves dividing a set of n objects into a specified number of clusters
k, so that objects are similar to other objects in the same cluster, and different
from objects in other clusters. Although clustering algorithms can work with
objects of different kinds, we have focused on documents.

Several clustering approaches assume that the appropriate value of k is
known. However, there may be quite a few situations in which it is not pos-
sible to know that appropriate number of clusters, or even an approximation.
For instance, if we want to divide into clusters a set of documents that are the
result of a query to a search engine, the value of k can change for each set of
documents that result from an interaction with the engine.

In this work, we have dealt with the problem of clustering a set of docu-
ments without prior evidence on the appropriate number of clusters. Our aim
is to provide an approximation of an appropriate value of k, with an acceptable
computational cost, for a small number of documents.

There are various approaches for obtaining the optimum number, k, of clus-
ters. We have focused on global stopping rules. These rules evaluate a measure,
C(k), of the goodness of the partition into k clusters, and calculate the value of
k for which C(k) is optimal. This C(k) measure is usually based on the within-
cluster and between-cluster similarity or distance. A drawback of many of these
rules is that C(1) is not defined [Gordon 99], so the set of data is always assumed
to be partitioned, and this is one of our assumptions. Another general drawback



of stopping rules is the high computational cost of calculating the best value of
k, even with a moderate number of documents, n.

Many different stopping rules have been proposed. In [Milligan & Cooper 85]
a comparative study of 30 stopping rules is presented. That study was the re-
sult of a simulation experiment carried out with artificial data sets containing
nonoverlapping clusters. Although the results of that experiment depend on the
cluster generating strategy, the study is useful in identifying which stopping
rules perform better. One of the rules which performed best in that experiment
is Calinski and Harabasz’s rule. This is the stopping rule which we have selected.

The Calinski and Harabasz [Calinski & Harabasz 74] stopping rule calculates
an informal indicator of the best number of clusters. On this rule we have de-
signed and implemented a Genetic Algorithm (GA) that finds an approximation
of the k optimal value, with significantly lower computation time than the former
in most cases.

There are earlier works that apply GA and evolutionary programming to clus-
tering. Some of them deal with clustering a set of objects by assuming that the
appropriate value of k is known ([Estivill-Castro & Murray 98], [Chu et al. 02],
[Murthy & Chowdhury 96], [Mertz & Zell 02], [Lucasius et al. 93]). However, in
[Sarkar et al. 97] an evolutionary programming-based clustering algorithm is
proposed that groups a set of data into an optimum number of clusters. It is
based on the well known K-means algorithm. They use two objective functions
that are minimized simultaneously: one gives the optimum number of clusters,
whereas the other leads to proper identification of each cluster’s centroids. In
[Makagonov et al. 02] discusses other heuristics to split the dendrite in an opti-
mal way without fixing the number of clusters.

In our approach, only one objective function is maximized, so we calculate
at the same time both aspects of the solution: an approximation to the optimum
k value, and the best grouping of the objects into these k clusters.

The remainder of the paper is organized as follow: Section 2 describes the
Calinski and Harabasz stopping rule. Section 3 presents the genetic algorithm.
Section 4 describes the experiments and their results. Section 5 includes the main
conclusions and suggestions for future work.

2 The Calinski and Harabasz Stopping Rule

In [Calinski & Harabasz 74] a method for identifying clusters of points in a mul-
tidimensional Euclidean space is presented. An informal indicator of the best
number of clusters k is also calculated.

The method supposes there are n individuals with values of the same v
variables for each individual. These individuals can be represented by n points
in a v-dimensional Euclidean space. An n×n distance matrix is then calculated.
Next, the method needs to calculate the Minimum Spanning Tree (MST), so
that the enormous number of possible partitions of a set of points is reduced to
those which are obtainable by splitting the MST.



This tree is then partitioned by removing some of its edges. If we want to
divide the n points into k clusters, k−1 edges have to be removed. For each pos-
sible partition, the within-cluster sum of squared distances about the centroids
(WGSS) is computed. In order to calculate the optimal value of k, first k = 2 is
taken, then k = 3, and so on. For each value of k, the best partition is calculated
with the minimum WGSS and the Variance Ratio Criterion (V RC):

V RC =
BGSS
k−1

WGSS
n−k

,

where BGSS is the total between-cluster sum of squared distances.
The authors suggest using V RC as an informal indicator for the best value of

k. They also suggest the computation of V RC for k = 2, 3, . . . choosing the value
on k for which the VRC has an absolute or local maximum. The computation
can be stopped when the first local maximum is reached.

Although of working with the minimum spanning tree instead of the whole

graph reduces the number of partitions to be examined, this number,
(

n− 1
k − 1

)
,

is high enough to use this method with even moderate value of n.
Our genetic algorithm uses the variance ratio criterion of Calinski and Harabasz’s

stopping rule as its fitness function.

3 The Genetic Algorithm

Genetic Algorithms were developed by John Holland at the University of Michi-
gan. They are search algorithms based on the mechanics of natural selection
and natural genetics [Holland 75]. The algorithm begins with an initial solutions
population of our problem. This population is generated randomly. Each one of
these solutions must be evaluated by means of a fitness function; the result of
this evaluation is a measure of individual adaptation. The individuals with the
best adaptation measure have more chances of reproducing and generating new
individuals. Each individual (chromosome) is represented by a set of parameters
(genes).

The GA uses two methods for generating new individuals: Crossover and
Mutation. In the Crossover method, two parents (individuals of the current pop-
ulation) are selected in order to generate two offspring which are added to the
next generation. That selection is carried out using the fitness function. The
Mutation method guarantees that all the search space has a nonzero probability
of being explored. Once the next population has been generated, by means of
Crossover, Mutation or both, it has to be evaluated, and it then replaces the
earlier population. This process is repeated a finite number of times with the
aim of obtaining the global optimum of the problem.

A current description of GA can be found in [Goldberg 02] and [Michalewicz 96].



3.1 Population Representation

Our Genetic Algorithm is based on the Calinski and Harabasz Stopping Rule.
We have used a chromosome (individual) description that allows us to represent
two different points: the value of k, and which edges of the MST have to be
eliminated. A vector with n− 1 binary elements can deal with both points. The
n − 1 elements represent the n − 1 edges of the MST. A vector element with
value “0” means that this edge remains, whereas a vector element with value
“1” means that this edge is eliminated. The number of elements with value “1”
represents the value of k − 1.

For instance, with 5 documents the MST will have 5 nodes and 4 edges. One
chromosome could be the vector (0, 0, 1, 1), where k = 3 and the edges removed
are the third and fourth ones. We have selected this representation because it is
straightforward and permits us to create valid chromosomes.

3.2 Solution Space

The solution space (search space) in the Calinski and Harabasz rule is
(

n− 1
k − 1

)
,

where k = 2, . . . , n − 1, and n is the number of documents. This formula has
the maximum value when k = n−1

2 + 1. We have adapted our GA to search for
an optimal solution in this specific search space. The probability of generating a
chromosome with a value of k near that maximum is greater than with a value
of k distant from that maximum.

3.3 Selection

The selection operator mimics the selection concept of natural genetic systems:
the best chromosome survives. The probability of selection of chromosome is di-
rectly proportional to the fitness value (V RC formula for us). The chromosomes
with the highest V RC values have more chances of reproducing and generating
new chromosomes.

3.4 Crossover

Once two parents are selected, two offspring are generated. These offspring will
receive information from both parents. The classical crossover method uses only
a crossing point chosen at random. This crossing point marks the position where
the vector will be cut in order to exchange information between the parents. For
example, these two parents:

Pa = 0101

Pb = 1100

and a crossing point c = 2 will generate the following offspring:

Oa = 0100



Ob = 1101

where Oa receives the first two values from Pa and the second ones from Pb,
whereas the Ob offspring receives the first two values from Pb and the second
ones from Pa.

We use a number of crossing points chosen at random (every number has the
same probability).

3.5 Mutation

Before evaluating each next generation mutation is applied, so that each chro-
mosome is subjected to a low probability of change or mutation. In order to
guarantee that all the search space can be explored, our GA uses a mutation
probability of 0.008%. In future experiments we will try other values.

3.6 Stopping criterion

There is no stopping criterion in the relevant literature which ensures the conver-
gence of a GA to an optimal solution. We have used the two most usual criteria.
Our GA stops when:

– After a number x of iterations, the best chromosome does not change. We
have fixed x = 3.

– The maximum number of generations is reached. We chose this number to
be n, the number of documents.

4 Experiments

For the experiments we implemented both algorithms: the Calinski and Harabasz
stopping rule and our GA.

We used a collection of 14,000 news items from a Spanish newspaper. The
documents that are the input of the algorithms are those resulting from a query
with a search engine concerning that collection of news items. In this framework,
no evidence of an appropriate number for k is known.

We are interested in calculating a “good” value for k in less time than the
Calinski and Harabasz stopping rule. The goodness of k value will be represented
by means of the V RC value; the bigger V RC, the better k, so that the value of
V RC is the measure of the quality of the clustering solution.

We used four sets of documents (the output of four queries) containing 10, 12,
31, and 100 documents respectively. We use the same document representation
as the search engine: the lemmas of each document filtered with stoplists. This
is the input of the clustering algorithms. First, the pattern or profile matrix of
the documents and then the distance matrix are computed.

The GA works with an initial population of n× 10 chromosomes, where n is
the number of documents. The maximum number of generations is n.



In Table 1 the results of the experiments can be seen in terms of V RC value,
k value, and time. The results for time in Table 1 of the GA refer to the average
time after running the algorithm 10 times. These experiments were carried out
on a Pentium IV of 2 GHZ with 512 MB of RAM.

The Calinski and Harabasz stopping rule performs well in relation to time
when the k value is close to 2. However, for other values of k (see the experiment
with 31 documents in Table 1) the time is unacceptable. Our GA always works
better with regard to the V RC value expected in that experiment.

Genetic Algorithm Calin. and Harab. Alg.

Num. Doc k Average VRC k Time VRC
value Time value value value

10 8 (70%) 9324µs 3260 4 4707µs 407
9 (20%) 10814µs 1426
7 (10%) 8132µs 620

12 8 (50%) 17528µs 6264 4 14255µs 511
10 (40%) 18552µs 2436
9 (10%) 12248µs 4111

31 16 (40%) 341118µs 16087 10 5864s 37536
17 (40%) 68045µs 14076
18 (10%) 1 s 12301
15 (10%) 221949µs 18385

100 43 (30%) 10s 1685 2 1s 77
41 (20%) 31s 2073
40 (10%) 64s 2414
42 (10%) 7s 1756
44 (10%) 11s 2043
45 (10%) 10s 1961
48 (10%) 16s 1736

Table 1. Results of Genetic Algorithm implementation

5 Conclusions

We propose a genetic algorithm that calculates an approximation of the optimum
k value, and finds the best grouping of the objects into these k clusters.

The experiments show that, most of the times, the GA obtains much better
values of V RC than the Calinski and Harabasz stopping rule and takes less time.

The Calinski and Harabasz stopping rule performs better in connection with
time when the locally optimum k is a value close to 2. This is because this rule
starts the exploration with k = 2, then 3, and so on, finishing when a local V RC
maximum is found. However, the GA carries out a parallel search, where any
value of k can be explored.



When the Calinski and Harabasz rule obtains better V RC value than our
GA, it usually uses much more time (see the experiment with 31 documents in
Table 1).

If there is evidence that an appropriate value of k is close to 2, then the
Calinski and Harabasz stopping rule can calculate that value and the resulting
k clusters in less time than the GA. But when the appropriate value of k is
completely unknown, the GA performs better most of the time.

We have to test some points of the algorithm: (1) to try elitism, (2) to try
other mutation methods, and (3) to carry out more experiments.

Acknowledgments

This research is supported by the Spanish Research Agency, project HERMES
(TIC2000-0335-C03-03), and by the University of the Basque Country (9/UPV
00224.310-13566/2001).

References

[Calinski & Harabasz 74] Calinski, T., Harabasz, J.: “A Dendrite Method for Cluster
Analysis”. Communications in Statistics, 3(1), (1974) 1–27.

[Chu et al. 02] Chu S.C., Roddick J.F., Pan J.S.: “An Incremental Multi-Centroid,
Multi-Run Sampling Scheme for k-medoids-based Algortihms-Extended Report”.
Proceedings of the Third International Conference on Data Mining Methods and
Databases, Data Mining III, (2002), 553–562.

[Estivill-Castro & Murray 98] Estivill-Castro V., Murray A.T.: “Spatial Clustering for
Data Mining with Genetic Algorithms”. Proceedings of the International ICSC Sym-
posium on Engineering of Intelligent Systems, EIS-98, (1998).

[Goldberg 02] Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, Addison Wesley Longman, Inc. (2002).

[Gordon 99] Gordon, A. D.: Classification, Chapman & Hall/CRC, (1999).
[Holland 75] Holland, J. H.: Adaptation in natural and artificial system, Ann Arbor:

The University of Michigan Press. (1975).
[Lucasius et al. 93] Lucasius C.B., Dane A.D., Kateman G.: “On k-medoid clustering

of large data sets with the aid of Genetic Algorithm: background, feasibility and
comparison”. Analytica Chimica Acta, Elsevier Science Publishers B.V. 283(3), (1993)
647–669.

[Makagonov et al. 02] Makagonov, P., Alexandrov, M., Gelbukh, A.: “Selection of typ-
ical documents in a document flow”. Advances in Communications and Software
Technologies, WSEAS Press (2002) 197–202.

[Mertz & Zell 02] Merz P., Zell A.: “Clustering Gene Expresion Profiles with Memetic
Algorithms”. Lecture Notes in Computer Science 2439, Springer-Verlag Berlin (2002)
811–820.

[Michalewicz 96] Michalewicz, Z.: Genetic algorithms + data structures = evolution
programs, Springer Comp. (1996).

[Milligan & Cooper 85] Milligan, G. W., Cooper, M.C.: “An Examination of Proce-
dures for Determining the Number of Clusters in a Data Set”. Psychometrik, 58(2),
(1985) 159–179.



[Murthy & Chowdhury 96] Murthy C.A., Chowdhury N.: “In search of OptimalClus-
ters Using Genetic Algorithms”. Pattern Recognition Letters, 17(8), (1996), 825–832.

[Sarkar et al. 97] Sarkar, M., Yegnanarayana, B., Khemani, D.: “A clustering algo-
rithm using an evolutionary programming-based approach”. Pattern Recognition Let-
ters, 18, (1997) 975–986.


