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ABSTRACT
This paper presents the Unanimous Improvement Ratio (UIR),
a measure that allows to compare systems using two evalua-
tion metrics without dependencies on relative metric weights.
For clustering tasks, this kind of measure becomes neces-
sary given the trade-off between precision and recall oriented
metrics (e.g. Purity and Inverse Purity) which usually de-
pends on a clustering threshold parameter stated in the al-
gorithm. Our empirical results show that (1) UIR rewards
system improvements that are robusts regarding weighting
schemes in evaluation metrics, (2) UIR reflects improvement
ranges and (3) although it is a non parametric measure, it is
sensitive enough for detecting most robust system improve-
ments. The application of UIR to the second Web Peo-
ple Search evaluation campaign (WePS-2) shows that UIR
is able to complement successfully the results offered by a
conventional metric combination approach (such as Van Ri-
jsbergen’s F measure).

General Terms
H.3.5 [INFORMATION STORAGE AND RETRIEVAL]: On-
line Information Systems, Web-based Service; H.3.1 [Infor-
mation Storage and Retrieval]: Content Analysis and Index-
ing; I.2.7 [Artificial Intelligence]: Natural Language Process-
ing

Keywords
Evaluation, combining metrics, web people Search, text clus-
tering

1. INTRODUCTION
Clustering consists of grouping items according to their

similarity to each other, and it has applications in a wide
range of artificial intelligent problems. In particular, in the
context of textual information access, clustering algorithms
are employed for information retrieval (clustering text docu-
ments according to their content similarity), document sum-
marization (grouping pieces of text in order to detect redun-
dant information), topic tracking or opinion mining (e.g.
grouping opinions about a specific topic), etc.

In such scenarios, clustering distributions produced by
systems are usually evaluated extrinsically, i.e., according
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to their similarity to a manually produced grouping. There
exists a wide set of metrics to measure this similarity, but
all of them are grounded on two dimensions: (i) to what
extent items in the same cluster also belong to the same
group in the gold standard; and (ii) to what extent items in
different clusters also belong to different groups in the gold
standard. A wide set of extrinsic metrics has been proposed:
Entropy and class entropy [9, 6], Purity and Inverse Purity
[11], Bcubed Precision and Recall metrics [5], metrics based
on counting pairs [7, 8], etc.1 In order to evaluate systems,
metrics are usually combined according to Van Rijsbergen’s
F function [10]:

Fα(A,B) = A ∗B/(α ∗R+ (1− α) ∗ P )

where the α parameter allows to assign a relative weight to
each metric. After stating the α value, the system improve-
ments according to F are checked by means of statistical
significant tests over test cases.

Our research goals are:

1. Verify to what extent the clustering evaluation results
can be biased by the assigned metric weighting (i.e.
the value for α), even when detected differences are
statistically significant.

2. Introduce a measure to quantify improvements with-
out dependencies from metric weighting (the Unani-
mous Improvement Ratio).

In Section 2 we discuss how metric weights can bias the
results of an evaluation. In Section 3 we introduce our pro-
posal, and in Section 4 we test it with some empirical studies.
Finally, in Section 5 we present a use case (the application
of our methodology to the results of the Second Web People
Search Evaluation Campaign) and end with some conclu-
sions in Section 6.

2. THE EFFECTS OF METRIC WEIGHT-
ING IN CLUSTERING TASKS

Although there is an implicit consensus among researchers
that the F measure [10] is the best way of combining eval-
uation metric pairs, F requires to assign relative weights
to the individual metrics involved. For some tasks this re-
quirement is not a problem, given that (i) metrics are often

1See [2] for a detailed overview.



correlated and (ii) the mathematical properties of F ensure a
certain robustness across different parametrizations. There-
fore, sometimes the metric weights have only a minor impact
of the system ranking produced by F.

Figure 1: Evaluation results for clustering systems
in WEPS 2007

Figure 2: System evaluation results for several F
parametrizations

Clustering, however, is very sensitive to the parametriza-
tion in metric combining functions. In order to obtain em-
pirical evidence, we will analyse in this article the evalua-
tion results for the First Web People Search Task [3] that
was held in the framework of the Semeval-2007 Evaluation
Workshop 2. This task aims to disambiguate person names
in Web search results. The participant’s systems receive as
input web pages retrieved from a Web search engine using
an ambiguous person name as a query (e.g. “John Smith”).
The systems output must specify how many referents (dif-
ferent people) exist for that person name and assign to each
referent its corresponding documents. The challenge is to
correctly estimate the number of referents and group doc-
uments referring to the same individual. A special charac-
teristic of this test set is that many elements (web pages
in the search results) are unique in their category. That is
to say, many people are mentioned in just one web page.
This means that a default strategy of locating each docu-
ment in an individual cluster (maximum Purity) might also
give an acceptable Inverse Purity. That is, most of classes
of documents will be totally covered in one cluster.

Figure 1 shows the Purity and Inverse Purity values ob-
tained for each system. The figure shows that there is an

2http://nlp.cs.swarthmore.edu/semeval

F0.5 F0.2

Ranked systems F result Ranked systems F result
S1 0,78 S1 0,83
S2 0,75 S3 0,78
S3 0,75 S2 0,77
S4 0,67 S6 0,76
S5 0,66 S5 0,73
S6 0,65 S8 0,73
S7 0,62 S11 0,71

B1 0,61 S7 0,67
S8 0,61 S14 0,66
S9 0,58 S15 0,66
S10 0,58 S12 0,65
S11 0,57 S9 0,64
S12 0,53 S13 0,63
S13 0,49 S4 0,62
S14 0,49 S10 0,6
S15 0,48 B100 0,58

B100 0,4 S16 0,56
S16 0,4 B1 0,49

Table 1: Rankings for F0.5 and F0.2 using Purity
and Inverse Purity

important trade-off between Purity and Inverse Purity. As
a result, depending on the metric weighting in the F com-
bining function, the system are ranked in a different way.
Figure 2 shows the F values obtained by each system across
different α values in F. This graph includes two baseline sys-
tems that consist of producing one cluster for each document
(B1) and grouping all documents in one cluster (B100).

Note that B1 is better than most systems according to α
values bigger than 0.5. We could conclude that most of sys-
tems do not behave better than assigning one cluster to each
document (baseline B1). But the nature of the task suggests
a different α value for the evaluation. Let us consider two
alternative clustering distributions. In the first one, all the
relevant documents are included in the same cluster which
contains also some non relevant documents. In the other
clustering distribution, there exists a cluster containing just
relevant documents, but not all of them. The first distri-
bution will obtain the maximum Inverse Purity, while the
second distribution will obtain the maximum Purity. Ac-
cording to F0.5 both distributions are equivalent in terms of
quality. However, from our point of view, the first distribu-
tion is better, given that it is easier to discard some doc-
ument from the relevant cluster than exploring all clusters
looking for the rest of relevant documents. In conclusion,
the parameter α should be fixed, for instance, at 0.2, giving
more weight to Inverse Purity than to Purity...

According to F0.2 a different system ranking is obtained
(see Table 1). In this case, the baseline B1 does not improve
any system. That is, according to F0.2 most systems repre-
sent a contribution with respect to the baseline approaches.
Our conclusion is that the task interpretation is crucial and
it can affect substantially the results. In this case F0.2 seems
to be more reasonable for this particular task. However, why
using α = 0.2 and not, for instance, 0.3?

A standard statistical significance test (such as the T-test
or Wilcoxon) does not address this issue, because it is only
applied to the outcome variable F and does not consider



B1 S14 Statistical significance
F0.5 0,61 0,49 0,022
F0.2 0,52 0,66 0,015

Table 2: Statistical significance of improvements:
F0.5 vs. F0.2

Purity and Inverse Purity values. For instance, B1 improves
S14 with statistical significance (see Table 2) according to
the Wilcoxon test on F0.5 (α < 0.05) but it is improved with
F0.2. In addition, we have identified 105 system pairs where
one system improves the other with statistical significance
according to the Wilcoxon test. From this set, in 89 cases
(%84) there exists a statistically significant quality decrease
according to one of the metrics.

We might think that it is enough to use the same α pa-
rameterization that is used in the competition for which our
system is designed. However, the meaning of the α value can
change across competitions depending on the data distribu-
tion. For instance, according to F0.5 the one-in-one base-
line approach improved the all-in-one baseline for WePS-1.
However, the situation reverses in WePS-2: the all-in-one
baseline seems substantially better.

In summary, we need a metric combining function which
does not depend on any arbitrary weighting criterion. This
measure should ensure that a system improvement is robust
across metric combining criteria and it should also reflect
the range of the improvement in order to select the best
one.

3. PROPOSAL

3.1 Unanimous Improvements
The problem of combining evaluation metrics is closely

related with the theory of conjoint measurement. In [1] it
is described in detail the role of conjoint measurement the-
ory in our problem. Rijsbergen [10] argued that it is not
possible to determine empirically which metric combining
function (over Precision and Recall) is the most adequate in
the context of Information Retrieval evaluation. However,
starting from the measurement theory principles, Rijsber-
gen described the set of properties that a metric combin-
ing function should satisfy. This set includes the Indepen-
dence axiom (also called Single Cancellation), from which
the Monotonicity property derives. The Monotonicity ax-
iom implies that the quality of a system that surpasses or
equals another one according to all partial metrics is nec-
essarily equal or better than the second. In other words, it
represents an improvement with no dependence on how the
metrics were weighted.

We will refer to this quality relation as an Unanimous
Improvement. Formally, being QX(a) the quality of a ac-
cording to a combining function of metrics in X:

QX(a) ≥∀ QX(b) if and only if x(a) ≥ x(b)∀x ∈ X

This relation has no dependence on how metrics are scaled,
weighted or on their degree of correlation in the metric set.
In other words, it implies an “empirical” improvement, but
without information about the improvement range. From its
definition and the antisymmetry property, the equality (=∀)
and the strict relationship >∀ are derived. The unanimous

equality implies that both systems obtain the same score for
all metrics:

QX(a) =∀ QX(b) ≡ (QX(a) ≥∀ QX(b)) ∧ (QX(b) ≥∀ QX(a))

The strict unanimous improvement implies that one sys-
tem improves strictly the other for all metrics:

QX(a) >∀ QX(b) ≡ (QX(a) ≥x QX(b))∧¬(QX(a) =x QX(b)) ≡

(QX(a) ≥∀ QX(b)) ∧ ¬(QX(a) ≥∀ QX(b))

The non comparability ‖ is also derived. It means that
some metrics reward one system and some metrics reward
the other. We refer to this cases as metric biased improve-
ments.

QX(a)‖∀QX(b) ≡ ¬(QX(a) ≥∀ QX(b)) ∧ ¬(QX(b) ≥∀ QX(a))

The theoretical properties of the Unanimous Improvement
are described in depth in [1]. The most important is that
the Unanimous Improvement is the only relational structure
that, while satisfying the Independence (Monotonicity) ax-
iom, does not depend on metric weightings. In other words,
we can claim that: A system improvement according to a
metric combining function does not depend in any way on
metric weightings only if there is no quality decrease accord-
ing to any individual metric.

3.2 Unanimous Improvement Ratio
Given that the Unanimous Improvement is the only metric

combining function that does not depend on metric weight-
ing, our unique observable over each test case is a three-
valued function (unanimous improvement, equality or biased
improvement). However, we need a quantitative function in
order to validate system improvements.

Having two systems a and b and the Unanimous Improve-
ment relationship over test cases, we have samples for which
a improves b (QX(a) ≥∀ QX(b)), b improves a (QX(b) ≥∀
QX(a)) and biased improvements (QX(a)‖∀QX(b)). We will
refer to these sets as Ta≥∀b, Tb≥∀a and Ta‖∀b respectively.
The total amount of samples will be referred as T . We want
to define the quantitative measure Unanimous Improvement
Ratio (UIR) according to three formal restrictions:

1. An increment of Ta‖∀b samples implies a decrement in
MIR. In the extreme case, if all samples are metric
weighting biased (Ta‖∀b = T ) then UIR=0.

2. If Ta≥∀b = Tb≥∀a then UIR= 0.

3. Given a fixed Ta‖∀b, UIR is proportional to Ta≥∀b and
inversely proportional to Tb≥∀a.

Given these restrictions, we propose the following UIR
definition:

UIRX,T (a, b) =
|Ta≥∀b| − |Tb≥∀a|

|T | =

|t ∈ T/QX(a) ≥∀ QX(b)| − |t ∈ T/QX(b) ≥∀ QX(a)|
|T |



Figure 3: F measure vs. UIR: rewarding robustness

UIR has two main limitations. First, as well as the Unan-
imous Improvement, it is not transitive [1]. Therefore, it is
not possible to define a linear system ranking based on UIR.
In addition, there is some information loss when comparing
systems given that the ranges in evaluation results are not
considered.

On the other hand, the main advantage of UIR is that no
metric weighting is necessary. In addition, given that the
Unanimous Improvement does not consider metric ranges,
the scale properties or normalization issues of individual
metrics do not affect the results.

4. EMPIRICAL STUDIES
This section provides experiments in order to confirm that:

1. UIR rewards improvements that are robust across met-
ric weighting schemes.

2. Given a set of equally robust improvements, the mea-
sure rewards the system that produces the largest im-
provement.

3. There exists a threshold for UIR values such that ob-
taining a UIR above the threshold guarantees that an
improvement is robust, and this threshold is not too
strong to identify differences between systems.

4.1 Rewarding Robustness across α values
Figure 3 shows three examples of system comparisons.

Each curve represents the Fα value obtained for the system
for different α values. System S6 (black curves) is compared
with S10, S9 and S11 (grey curves) in each of the graphs. In
all cases there is a similar quality increase according to F0.5.
However, UIR points out some differences: Depending on to
what extent the improvement is robust across α values in
F , UIR assigns diferent values to the improvement. S6 vs.
S11 (rightmost graph) gives the largest UIR, because those
systems do not swap their F values for any α. S6 vs. S10,
on the other hand, has the smallest UIR value because the
performances of S6 and S10 swap around α = 0.8.

Another way of testing whether UIR rewards robustness
is to consider separately two kinds of system comparisons:
(i) system pairs for which Fα increases for all α values, and
(ii) system pairs for which F increases for some α values and
decreases for other α values. Table 4.1 shows the average
increments for UIR and F0.5 in each case. Note that UIR

Improvements Other cases
for all α

28 system pairs 125 system pairs
| 4 F0.5| 0.12 0.13
|UIR| 0.53 0.14

Table 3: UIR and F0.5 increase when F increases for
all α values

Robust Contradictory No
improvements improvements imp.

53 pairs 89 pairs 11 pairs
| 4 F0.5| 0.11 0.15 0.05
|UIR| 0.42 0.08 0.027

Table 4: UIR and F0.5 increases vs. statistical sig-
nificance tests

substantially rewards the absence of contradiction between
α values (0.53 vs. 0.14). Notably, the absolute increase of
F0.5 is similar for both cases. In other words, although F0.5

assigns the same relevance to purity and inverse purity, a
certain F0.5 improvement range does not say anything about
whether we are being able to improve both purity and in-
verse purity at the same time.

We can also confirm this conclusion by considering inde-
pendently both metrics (Purity and Inverse Purity). Ac-
cording to the statistical significance of the improvements
for independent metrics, we can distinguish three cases:

1. Contradictory improvements: One metric increases and
the other decreases, both with statistical significance.

2. Robust improvements: Both metrics improve signifi-
cantly, or at least one improves significantly and the
other does not decrease significantly.

3. No improvement : There is no statistically significant
differences for any metric.

We use for this purpose the Wilcoxon test with p < 0, 05.
Surprisingly, Table 4.1 shows that the F0.5 increase is even
bigger when improvements are contradictory than when they
are robust. Apparently F0.5 rewards individual metric im-
provements obtained at the cost of (smaller) decreases in



Figure 4: F vs. UIR: reflecting improvement ranges

Figure 5: UIR vs. the improvement according to the less improved metric.

the other metric. UIR has a sharply different behaviour,
rewarding robust improvements.

4.2 Reflecting Improvement Ranges
We have empirically verified that UIR reflects to what

extent an improvement is robust across alternative α values.
However, given a set of equally robust improvements, the
measure should also reward the system that produces the
largest improvement.

Let us consider an example taken from the WePS-1 testbed.
Figure 4 represents the Fα∈[0,1] values for three system pairs.
In all cases one system improves the other for all α val-
ues, but depending on the improvement range, UIR assigns
higher values to larger improvements.

In fact, when both metrics are improved, the metric that
has the weakest improvement determines the behaviour of
UIR: Figure 5 illustrates this relationship for the ten sys-
tem pairs with a largest improvement for both criteria; the
Pearson correlation in this graph is 0.94.

4.3 UIR Threshold
What UIR value is appropriate to state that a system

improvement is robust enough? We could set a very restric-
tive threshold and say, for instance, that an improvement is

significantly robust when UIR≥ 0.75. But such restriction
would hardly be satisfied, and then the UIR test would not
be informative: many robust system improvements would
remain undetected by this test.

So our question now is whether there exists a threshold
for UIR values such that obtaining a UIR above the thresh-
old guarantees that an improvement is robust, and at the
same time the threshold is not too strong to identify actual
differences between systems.

Figure 6 shows the ratio of system pairs (a, b) (black curve)
such that UIR(a, b) is bigger than a given threshold (horizon-
tal axis). We have added a few more curves that represent
key features of the system pairs:

• The proportion of robust system improvements,i.e. cases
where both metrics improve significantly, or at least
one improves significantly and the other does not de-
crease significantly

• The proportion of contradictory system improvements
(see definition above).

• The ratio of system pairs for which F0.5 increases for
all α values (Fα(a) > Fα(b)∀α).



Figure 6: Improvement detected accross UIR thresholds

• The ratio of system pairs for which F0.5 decreases al-
though UIR is positive (F0.5(a) < F0.5(b)).

As the figure shows, an UIR threshold of 0.25 accepts
around 25% of all system pairs. From this set, the number of
contradictory improvements and the number of cases where
F0.5 decreases are low (%4 and %6 respectively). Also, in
50% of the cases Fα increases for all α values, and in 80%
of the cases improvements are robust. It seems, therefore,
that UIR≥ 0.25 is a reasonable threshold.

5. USE CASE: THE WEPS-2 DATASET
In order to illustrate how UIR can be used, we analyze

the results of the WePS-2 evaluation campaign [4], where
BCubed Precision and Recall metrics were used. The offi-
cial system ranking was generated according to F0.5. The
best run for each participant was included in the final rank-
ing. In addition, three baseline approaches were included:
all documents in one cluster (B100), each document in one
cluster (B1) and the union of both (BCOMB) - see [4] for
an explanation -.

Table 5 shows the results of applying UIR to the WePS-2
systems. The third column represents the set of systems that
are improved by the corresponding system with a UIR>0.25.
The fourth column represents the reference system, defined
as, given a system a, the system that improves a with max-
imum UIR. It represents the system with which a should
be replaced in order to improve results without sacrificing
any partial evaluation metric. Finally, the last column rep-
resents the UIR between the system and its reference.

Note that UIR adds new insights into the evaluation pro-
cess. First of all, note that, although the three top-scoring
systems have a similar performance in terms of F (0,82,
0,81 and 0,81), PolyUHK is consistently the best accord-
ing to UIR (it is the reference for 10 systems). In the
most extreme case, UIR(PolyUHK,PRIYAVEN)=1, which
means that PolyUHK improves both precision and recall of
PRIYAVEN for all test cases in the dataset. Therefore, UIR
clearly points out a best system, where F alone could only
discern a set of three top scoring systems.

Note also that, although the ALL IN ONE baseline is bet-
ter than five systems according to F, it is not better than any
of them according to UIR. In fact, only the ONE IN ONE
baseline is able to improve some system (BUAP 2). There-
fore, UIR also adds the capability of detecting baseline ap-
proaches: if a system is adopting a baseline behaviour (for
instance, using a very low clustering threshold that ends up
setting up one big cluster), F will not clearly signal this
problem (the F value obtained is better than five systems),
but UIR will signal a problem, because this baseline strategy
is not able to robustly improve any system.

6. CONCLUSIONS
The analysis described in this paper shows that the com-

parison of systems in clustering tasks is highly sensitive to
the way of combining evaluation metrics. The UIR measure
presented in this paper allows to combine evaluation met-
rics without assigning a relative weight to each metrics, and
the empirical analysis has showed that UIR rewards robust
improvements with respect to different metric weights.



System F0.5 Improved systems Reference UIR for the
(UIR > 0.25) system reference system

PolyUHK (S1) 0,82 S2 S4 S6 S7 S8 S11..S17 B1 - -
ITC-UT 1 (S2) 0,81 S4 S6 S7 S8 S11..S17 B1 S1 0,26

UVA 1 (S3) 0,81 S2 S4 S7 S8 S11..S17 B1 - -
XMEDIA 3 (S4) 0,72 S11 S13..S17 S1 0,58

UCI 2 (S5) 0,71 S12..S16 - -
UMD 4 (S6) 0,71 S4 S7 S11 S13..S17 B1 S1 0,35
FICO 3 (S7) 0,70 S11 S13..S17 S2 0,65

LANZHOU 1 (S8) 0,70 S11..S17 S1 0,74
UGUELPH 1 (S9) 0,63 S4 S12 S14 S16 - -

CASIANED 5 (S10) 0,63 S12..S16 - -
AUG 4 (S11) 0,57 S14..S17 S3 0,68

UPM-SINT 1 (S12) 0,53 S14 S16 S1 0,71
ALL IN ONE BASELINE (B100) 0,53 BCOMB - -

UNN 2 (S13) 0,52 S15 S16 S1 0,9
COMBINED BASELINE (BCOMB) 0,52 - B100 0,65

ECNU 1 (S14) 0,42 - S1 0,9
UNED 3 (S15) 0,41 S16 S1 0,97

PRIYAVEN (S16) 0,39 - S1 1,00
ONE IN ONE BASELINE (B1) 0,34 S17 S1 0,29

BUAP 2 (S17) 0,33 - S6 0,84

Table 5: WePS-2 results with Bcubed Precision and Recall, F and UIR measures.

UIR can be exploited in two ways. First, according to the
UIR≥ 0.25 threshold that was inferred from our empirical
study, UIR is able to test the robustness of system improve-
ments in shared tasks (such as the WePS clustering task).
Second, given that UIR provides quantitative values, it is an
alternative way of selecting the best approach during system
training processes.

An UIR evaluation package is available for download at
http://nlp.uned.es
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