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The choice of the dictionary that provides the possible translations a system has to choose when perform-
ing Cross-Lingual Word Sense Disambiguation (CLWSD) is one of the most important steps in such a task.
In this work, we present a comparison between different dictionaries, in two different frameworks. First
of all, a technique for analysing the potential results of an ideal system using those dictionaries is
developed. The second framework considers the particular unsupervised CLWSD system CO-Graph,
and analyses the results obtained when using different bilingual dictionaries providing the potential
translations. Two different CLWSD tasks from the 2010 and 2013 SemEval competitions are used for
evaluation, and statistics from the words in the test datasets of those competitions are studied. The
conclusions of the analysis of dictionaries on a particular system lead us to a proposal that substantially
improves the results obtained in that framework. In this proposal a hybrid system is developed, by
combining the results provided by a probabilistic dictionary, and those obtained with a Most Frequent
Sense (MFS) approach. The hybrid approach also outperforms the results obtained by other unsupervised
systems in the considered competitions.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Cross-Lingual Word Sense Disambiguation (CLWSD) can be
defined as the task of automatically determining the contextually
appropriate translation for a given word, from a source language
to a target one. This is a particular case of the Word Sense Disam-
biguation (WSD) problem, which has been widely studied in the
NLP community [11]. WSD is an essential and necessary step for
many processes, such as automatic summarisation, information
retrieval, topic detection, and in general, any NLP process in which
the semantic level of the words is important. WSD has been fre-
quently treated as a supervised learning problem [19,22], based
on techniques that depend on semantically tagged corpora or lex-
ical databases like Wordnet [8]. On the other hand, unsupervised
techniques, also known as Word Sense Induction (WSI) techniques,
do not require those kinds of resources. Their objective is to induce
the different senses of a specific word in a given text by selecting
groups of words related to a particular sense of the word. The
motivation of the CLWSD task comes from the scarcity of sense
inventories and sense-tagged corpora, and the need to evaluate
the performance of WSD systems in real problems [14].
A Cross-Lingual Word Sense Disambiguation task proposes a set
of instances in which a target word can be found. This target word
needs to be disambiguated, from an original language (typically
English) to a final one. Fig. 1 illustrates this task with an example.
The bilingual dictionary that provides translations, both for words
surrounding the target word (context) and for the target word itself,
is a key part of the disambiguation process. This dictionary offers
the potential translations of the target word, and any system which
performs the disambiguation has to choose, among the translations,
those which are considered most suitable for the particular sen-
tence. This selection is then matched against an expected output
or gold standard to determine a score for that specific test instance.
In this example, the context taken into account for performing the
disambiguation is only composed by nouns, although any other
word (e.g. verbs, adjectives) can also be considered.

Many issues arise along the disambiguation process, the choice
of an adequate bilingual dictionary being one of the most important
for ensuring the good performance of a system. We compare the use
of bilingual dictionaries of different nature: manually created by
experts, semi-automatic, i.e. extracted with automatic tool but with
human supervision or intervention, collaboratively edited by differ-
ent authors, and statistical dictionaries. This last type of dictionar-
ies, automatically created without human supervision, provide a
much larger number of translations, at the price of introducing
noise. However, apart from their size and the coverage they can
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present (denoted by the number of different translations for each
word), this kind of dictionaries provide information about the trans-
lation probabilities, since their construction is based on statistical
characteristics. The other dictionaries do not usually present this
kind of information. Considering that CLWSD tasks are based on
translations of words used in general sentences, we can expect that
information about the most frequent translations would be useful.

In this work, we analyse different dictionaries that provide the
candidate translations, and compare the results obtained using
them, both in ideal conditions, and inside a particular unsuper-
vised CLWSD system [7]. These results show the potential varia-
tions of the effectiveness of the CLWSD system according to the
choice of the bilingual dictionary.

1.1. Background work

For the purposes of this work, we have selected some evaluation
tasks related to Cross-Lingual Word Sense Disambiguation, as a
framework in which the effect of the selected dictionary can be
tested. Specifically, we have selected task 3 of 2010 SemEval com-
petition [14] and task 10 of 2013 SemEval competition [15], both of
them based on the Europarl parallel corpus [12]. Many different
systems were proposed for these two tasks, and the use of bilingual
dictionaries is a common practice inside the proposed algorithms,
both for supervised and unsupervised systems. The OWNS system
[18] is a supervised system which participated in the 2010 SemEval
competition. It uses nearest neighbours classifiers based on pair-
wise similarity measures. Most of its lexical information is extract-
ed from WordNet [8], although it uses a noisy statistical dictionary
learnt from the Europarl corpus for proposing possible translations.
Other supervised methods also participated in the 2010 competi-
tion: UvT-WSD [32], applying the K-NN algorithm, and FCC [34],
using a Naive Bayes classifier. In those cases, the tool used for
extracting bilingual dictionaries was GIZA++ [26], which has pro-
ven to be the preferred tool for aligning the corpus at word level
and extracting translations. Regarding unsupervised systems par-
ticipating in the 2010 competition, in [30], a co-occurrence graph
based on the aligned contexts of the target word is built for
performing the disambiguation. This graph aggregates words from
different languages and the disambiguation is made through the
extraction of the minimum spanning tree. In this work, multilin-
gual dictionaries such as EuroWordNet [35], and PanDictionary
[21] are proposed for extracting translations, frequencies and
characteristics. The other unsupervised system of the 2010 compe-
tition, T3-COLEUR [10] is based on probability tables extracted
from the Europarl corpus, and also uses a GIZA-based bilingual
dictionary. In this competition, the best results for the Spanish
Fig. 1. Example of a general disambiguation process of a sentence co
language were obtained by the supervised system UvT-WSD, while
the best unsupervised system was T3-COLEUR.

In regard to the 2013 competition, the only system that did not
make use of the GIZA++ tool was the supervised system HLDTI [28].
It used maximum entropy classifiers, trained on local context fea-
tures, to perform the disambiguation, and the aligning tool selected
for extracting translations was the Berkeley Aligner [6]. The other
systems of this competition used GIZA-based dictionaries, inde-
pendently of the final languages of the translations. In this group,
we can find supervised systems such as WSD2 [33], the new ver-
sion of the UvT-WSD also based on a K-NN classifier. Unsupervised
systems also used this resource: LIMSI [2] addressed the problem
by using vectors of features extracted from the corpus. XLING
[31] generated topic models from the source corpus using Latent
Dirichlet Allocation (LDA) [4]. The main hypothesis is that the dif-
ferent senses of a target word will be classified into different topics
by the LDA algorithm. The NRC-SMT system [5] uses a statistical
machine translation approach, extracting knowledge only from
the Europarl corpus in its first run, and adding information from
news data in a second run of the system. In the 2013 competition
also a supervised system, HLDTI, obtained the best results. The best
unsupervised system was LIMSI.

Finally, we can find other systems that did not participate in any
of the competitions, although they present results for some of the
proposed datasets: the ParaSense system [16] is a supervised,
memory-based algorithm that builds different classifiers using
both local context features and binary bag-of-words features.
Unsupervised systems as the multilingual system described in
[25] also addressed the problem without participating in the com-
petitions. This system exploits the multilingual knowledge base
BabelNet [24], for performing WSD and CLWSD, obtaining very
competitive results. Both works make use of the GIZA++ tool, the
first one as a main aligner for extracting a bilingual dictionary,
and the second one for proposing the most frequent sense transla-
tions when no sense assignment is attempted.

1.2. Main objectives

In this work we analyse the effect of bilingual dictionaries, both
inside an ideal system, and a particular CLWSD system, named CO-
Graph. This system is based on an unsupervised algorithm for
extracting co-occurrence graphs from text documents [20]. In this
case, we focus on the English–Spanish cross-lingual disambigua-
tion, and on the out-of-five evaluation proposed in both SemEval
tasks already mentioned. This evaluation scheme requires the
systems to provide up to five guesses for each target word in each
context, without penalising them due to the number of guesses.
ntaining the target word coach, with Spanish as target language.
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The first objective of this work is the design of some experi-
ments to compare different dictionaries in a general framework
of a disambiguation task. For this purpose, we have developed a
frame in which theoretical limits can be found for the performance
of each of the analysed dictionaries for well defined CLWSD tasks.
Once that we find these limits (upper bounds), we intend to
explore the actual performance of a particular CLWSD system in
the task, and analyse its results depending on the dictionary. Final-
ly, on the basis of our observations, we develop a technique which
combines the information provided by different sources. This tech-
nique has allowed us to outperform other unsupervised systems
taking part in the SemEval competitions. Interestingly, this tech-
nique is not only valid for a particular system, but for any unsuper-
vised system using weights for selecting the most appropriate
translations.

The rest of the paper is organised as follows: Section 2 describes
the main characteristics of the CO-Graph system, which is used
through the rest of the work to compare the different dictionaries.
Section 3 explains in detail the different considered dictionaries.
The characteristics of the evaluation framework used for testing
the dictionaries are shown in Section 4. Section 5 analyses the
results that could be achieved by an ideal system, depending on
the bilingual dictionary used. An error analysis concerning those
results is conducted in Section 6. In Section 7, the dictionaries
are tested within the CO-Graph system previously mentioned,
and the obtained results are analysed. Section 8 describes the
development of a combined approach that can improve the previ-
ous results. Finally, conclusions and future work are detailed in
Section 9.
2. CLWSD system description: CO-Graph

In this section we describe the main characteristics of the par-
ticular unsupervised CLWSD system used for the disambiguation,
namely CO-Graph. In this system we need to select the five most
suitable translations given each context, according to the SemEval
2010 and 2013 evaluation framework. The base of knowledge for
all the steps of the disambiguation system is the Europarl parallel
corpus [12], which was compiled and sentence-aligned from the
proceedings of the European Parliament between 1996 and 2011.
Fig. 2. Diagram and example of the CLWSD system. The community graph is extracted fro
the context and the target word. Communities named with ‘‘MT ’’ contain translations of th
of the context. The letter ‘‘A’’ represents the number of translations from words of the c
Although the corpus is presented in many languages, for this par-
ticular work we focus on the English–Spanish translation.

The whole disambiguation system is composed of several steps.
A test instance can be divided into the target word to be disam-
biguated and the context (rest of words in the test sentence). Using
a bilingual dictionary, we translate the target word and the context
words. From the corpus written in Spanish, we extract a co-occur-
rence graph, and then a community graph is generated from this
graph. This community graph links clouds of words, each one of
them containing related words, in terms of co-occurrence. After
this step, the translations of words (in this case, nouns) of the con-
text and the potential translations of the target word are found
inside the community graph, and the distances between communi-
ties containing translations of the target word and communities
containing translations of words of the context are calculated.
Finally, the scores of the possible translations are ranked in order
to select the five most suitable translations for the target word in
this particular context. Fig. 2 illustrates the complete CO-Graph
system, with all its phases: the extraction of words from the test
instance, the translation of those words, the construction of the
co-occurrence graph and the community graph, and finally the dis-
ambiguation step, involving the community graph and the trans-
lated words. In later subsections each step of the process will be
described in detail.
2.1. Co-occurrence graph construction

The system used for disambiguation is based on a co-occurrence
graph. The main hypothesis for building the graph considers a
document to be a coherent piece of information, and thus words
in a document tend to (statistically) adopt a related sense. Howev-
er, this is not exactly true, since some words may appear in a docu-
ment without really being related to its main sense. So we only
consider co-occurrences that are statistically significant (do not
happen by chance).

First steps for building the graph require part-of-speech tagging
of the documents, which is done with the TreeTagger tool [29], and
selection of the words that will become part of the graph. In this
work, we only use nouns as nodes of the graph, which are linked
depending of the importance of their co-occurrences.
m the co-occurrence graph, and used to compute the distances between words from
e target word, and communities named with ‘‘MC ’’ contain translations of the words
ontext that can be found in each of the ‘‘MC ’’ communities.
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From the tagged documents written in the final language (in
this case Spanish), we are now able to build the co-occurrence
graph. In order to check if the co-occurrence of two words in the
same document is statistically significant, a null model is defined,
that represents what is considered pure chance. In this null model,
for each pair of words co-occurring k times, a random and indepen-
dent distribution is generated among a set of documents, and the
probability of those two words co-occurring k times by pure
chance is calculated. Then, given two words randomly and inde-
pendently distributed among N documents, and appearing in n1

and n2 documents respectively, the probability of those words
co-occurring in exactly k documents is given by:

pðkÞ ¼

N

k

� �
N � k

n1 � k

� �
N � n1

n2 � k

� �

N
n1

� �
N
n2

� � ð1Þ

if maxf0; n1 þ n2 � Ng 6 k 6 minfn1; n2g, and zero otherwise. The

denominator, formed by N
n1

� �
N
n2

� �
, represents the number of

ways in which the subsets n1 and n2 of documents can be randomly
and independently selected from the complete collection, which
contains N documents. On the other hand, considering k as the
number of coincidences between the first and second selection of
sets, in the numerator we represent how many of the choices of
n1 and n2 contain exactly k coincidences. We have four different
types of documents: k documents containing co-occurrences of
the words, n1 � k documents containing only the first word, n2 � k
containing only the second word, and N � k� ðn1 � kÞ� ðn2 � kÞ
¼ N � n1 � n2 þ k documents not containing any of the words. The
number of choices then is represented by the multinomial coeffi-

cient N
k;n1 � k;n2 � k

� �
, that can be also expressed as shown by

the numerator of Formula (1).
If this probability is high, that is, if the null model can easily

generate the co-occurrences between this specific pair of words,
then it is not considered to be statistically significant, and hence
no link is created between those words in the graph. More
specifically, a p-value p is calculated for the co-occurrence of two
words inside the null model. If p� 1 (lies below a given threshold
next to 0), then the appearance of the two words in a document is
significant (their meaning is probably related). Moreover, we can
quantify this significance by taking the median (corresponding to
p ¼ 1=2) as a reference, and hence, the weight of a link established
between two words inside the graph is ‘ ¼ � logð2pÞ, that is, a
measurement of the deviation from the median. The p-value can
be seen as a measurement of the restrictiveness of the graph, since
we can establish a minimum value for p, above which no link is
created between two words. Therefore, as the threshold for p
decreases, the graph becomes more restrictive. This threshold val-
ue is a parameter to be set in the experiments.

2.2. Community extraction

After the co-occurrence graph is built, we need to define a way
to perform the final disambiguation of a word. The construction of
the co-occurrence graph gives us a structured representation of the
information inside the corpus. We now need to select from the
graph those nodes closely related that can be interpreted as a
specific sense. The technique used for this step is named ‘‘commu-
nity detection’’: A community is a sub-graph whose nodes present
some kind of structural or dynamic affinity. In this technique, we
assume that words belonging to the same community have a relat-
ed sense, different from those represented by other communities.
There exist many different community extraction algorithms. In
this work, we use the Walktrap algorithm [27]. This proposal is
based on the fact that a random walker that jumps between nodes
inside the graph, gets more easily trapped in those parts of the
graph (sub-graphs) that are densely connected. These sub-graphs
would then become the desired communities. The distance
between two nodes is small, and hence they belong to the same
community, if the accessibility of any third node is somewhat simi-
lar from any of the two nodes. The algorithm then generalises to a
more coarse-grained structure, for performing a community merg-
ing phase. In this phase distance between communities, instead of
nodes, is computed for selecting those adjacent communities that
can be merged due to their proximity.

With the communities obtained by the algorithm, we build a
new graph, called community graph (CG). In this graph, each
community is represented by a node, and an edge is added linking
communities C1 and C2 if and only if any word x 2 C1 is linked in
the co-occurrence graph to any word y 2 C2. It is important to
notice that the input of the Walktrap algorithm must be a connect-
ed graph, that is, a graph without isolated vertices. For ensuring
this, the giant component of the co-occurrence graph is used as
input of the Walktrap algorithm. This fact also guarantees the con-
nectivity of the community graph, and hence the distance between
any two communities can be calculated.
2.3. Disambiguation

For every test instance that contains a target word to be disam-
biguated and a set of words surrounding it (context), we perform a
part-of-speech tagging using the TreeTagger tool [29]. Then, we
select the nouns and obtain their translations, according to the
bilingual dictionary that we have selected. After that, we need to
identify, inside the community graph CG, those communities that
contain at least one of the translations, either from words of the
context or from the target word. As a result, we obtain two sets
of communities: the set MT includes communities that contain at
least one translation from the target word, and the set MC is com-
posed by communities containing at least one translation from any
word of the context. Through the community graph we can calcu-

late the distances between any community Mi
C 2 MC and any com-

munity M j
T 2 MT . Since a translation of a target word can belong to

the same community that a translation of a context word

(Mi
C ¼ M j

T ), the distance in that case would be 1, which is the mini-
mum distance we consider. In any other case, we add the number

of links in the shortest path between Mi
C and M j

T . Hence, if the path

between Mi
C and M j

T contains one link, the distance between them,
for our purposes, would be 2, if the path contains 2 links, the dis-
tance would be 3, and so on.

Our hypothesis for this algorithm is that the translation of the
target word that is nearer (in average) to the translations of the
context words, is more likely to be the most suitable one for that
target word in that context. Hence, we establish a formula for
ranking the potential translations of the target word, based on
two factors: the score of a translation is inversely proportional to
the distance between the community to which it belongs and
any community containing context translations, but directly pro-
portional to the number of context translations inside the commu-
nity. Thus, the weight or score of a translation of the target word,
wt , is given by:

wt ¼ max
Mi

C2MC

Ai
C

ðdMi
C Mt

T
þ 1Þ ð2Þ

where Ai
C is the number of context translations inside Mi

C , and dMi
C Mt

T

is the distance (number of steps) between Mi
C and Mt

T , that is, the



Table 1
Statistics from the bilingual dictionaries. Column ‘‘Entries’’ represents the total
number of entries of the dictionary. Column ‘‘Max # translations’’ shows the
maximum number of translations for a word. Column ‘‘Average # translations’’ shows
the average number of translations in the complete dictionary.
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community in which translation t is located. By ranking the scores
of all the possible translations for the target word given by the dic-
tionary, the system can propose the most suitable ones as a
solution.
Entries Max # translations Average # translations

External 50,911 87 2.32
MCR 35,440 56 2.09
BabelNet 384,832 89 2.62
GIZA++ 34,815 1344 7.51
3. Bilingual dictionaries

In this section, we present the main characteristics of the
different considered bilingual dictionaries. They are four English–
Spanish dictionaries: a manually created dictionary, built by
experts, which will be denoted as ‘‘external dictionary’’ along the
rest of the paper, a collaboratively edited dictionary, a semi-auto-
matic dictionary and a statistical, automatically created parallel
corpus-based dictionary. All of them are described below.

� External dictionary: This dictionary, described in [17] is com-
pletely external to the main task. It is a generic bilingual dic-
tionary, which has no relation to the source of knowledge in
the task (the Europarl corpus). The results offered by this dic-
tionary, both for the ideal system and for the CO-Graph system,
are considered to be a baseline for this work, and hence a goal of
the other dictionaries is to overcome those results.
� MCR dictionary:The Multilingual Central Repository [3] is a

lexical knowledge base (LKB) that constitutes a multilingual
large scale linguistic resource for many semantic processes,
due to the amount of multilingual knowledge that it contains
[1]. This LKB contains lexical information about five different
languages: English, Spanish, Basque, Catalan and Galician, and
is based on the WordNet and EuroWordNet projects. Synsets
from different languages are linked through the Inter-Lingual
Indices (ILIs). From the ILIs present in MCR 3.0 [9], we have
extracted direct translations from English to Spanish to create
our bilingual dictionary.
� BabelNet dictionary:BabelNet [24] is a very large semantic

multilingual network that links Wikipedia information to
WordNet synsets in an automatic way. The whole resource
could be considered as a semi-automatic dictionary, since mul-
tilingual information comprises both manual translations from
Wikipedia, and translations obtained by applying machine
translation to the SemCor corpus [23]. For any word in the Eng-
lish language, we can obtain all the possible senses of the word,
and their corresponding translations in the final language (in
our case, Spanish).
� GIZA++ dictionary:The statistical aligner GIZA++ is able to

extract one-to-many translations from a target word and their
corresponding probabilities of occurrence. For this aim, it uses
a parallel corpus as knowledge base, in our case the Europarl
corpus. In the first step, the GIZA++ tool performs a word align-
ment over the initial corpus, without any preprocessing. Once
that the alignment is done, we obtain a probability table. This
table links every word in the original language (in this case,
English) to each of its possible translations in the final language
(in this case, Spanish), and assigns a probability of occurrence.
Due to the automatic and statistical nature of the algorithm
implemented by GIZA++, the number of translations that it pro-
poses for each English word is very high. This fact may intro-
duce noise in the translation process so a technique to reduce
this inducted noise and thereby improve the accuracy is needed.
For this purpose, we performed the alignment in the other
direction, i.e., obtaining a one-to-many word alignment from
Spanish to English, and then calculated the intersection of both
probability tables. In this way, we obtain an English–Spanish
dictionary, ensuring that every English–Spanish translation
has an equivalent Spanish–English translation. We have exclud-
ed stop words for building the dictionary.
Table 1 shows some statistics about the dictionaries used in
this work. Specifically, we can observe the number of entries,
maximum number of translations presented by a word, and
the average number of translations for all the words in the
dictionary.

Regarding the number of entries in the dictionary, we can
observe that the BabelNet dictionary presents many more words
than any other dictionary. This can be due to the completeness
of the dictionary, which can be considered more as a encyclopaedic
dictionary, since not only synsets from WordNet, but also entities
from Wikipedia, are collected to build the dictionary. However,
the total number of entries is not important for this work, given
that all the words in the test sentences are covered by all the dic-
tionaries. The average number of translations is a more important
fact when we want to analyse the impact of each dictionary. In this
case, we can observe that most of the dictionaries offer an average
number of translations between 2 and 3. Nevertheless, the GIZA++
dictionary offers many more translations per word than the other
dictionaries. This can lead to a wider coverage of the problem.
On the other hand, and regarding a real system, this fact may imply
a drawback, considering that a high number of possible transla-
tions for a target word could prevent the system from finding the
most suitable ones. That is, the coverage would be high, but the
precision may decrease.

4. Datasets and evaluation

The evaluation setting adopted in our experiments is based on
the one proposed in task 3 of SemEval 2010 and task 10 of SemEval
2013 competitions. Evaluation is carried out, in both tasks, over a
test dataset with 20 different words and 50 sentences for each of
them. The gold standard used for evaluating the participant sys-
tems is built from the Europarl corpus, proposed as knowledge
base. For this purpose, a word-level alignment was performed
and manually evaluated for all the sentences of the corpus contain-
ing target words. After that, a manual clustering by meaning was
carried out, for every target word. The output of this process was
a sense inventory [13]. Annotators of the gold standard used the
clustered sense inventory for selecting the most appropriate trans-
lations of each target word. The translations are weighted depend-
ing on how many annotators selected each of them. Example 3
shows the gold standard for the Spanish language provided by
the annotators for a given sentence in which we can find the target
word ‘‘coach’’.
(3)
 SENTENCE 2: A branch line train took us to Aubagne where
a coach picked us up for the journey up to the camp.
coach.n.es 2 :: autocar 3;autobus 3;diligencia 1;
In the evaluation scheme, called ‘‘out-of-five’’ evaluation, the
system has to select five of the potential translations for each test
instance.



Table 2
Number of translations of the words in the datasets, for each dictionary: External
(second column), MCR (third column), BabelNet (fourth column) and GIZA++ (fifth
column). Bold represents maximum and minimum values for each dictionary.

Word External MCR BabelNet GIZA++

Coach 15 13 27 8
Education 6 4 10 52
Execution 4 6 14 30
Figure 29 25 25 146
Job 17 14 28 133
Letter 3 4 6 46
Match 15 26 18 101
Mission 6 7 8 35
Mood 4 3 4 32
Paper 10 8 12 64
Post 30 21 11 72
Pot 43 41 80 21
Range 25 17 30 100
Rest 22 11 13 87
Ring 31 13 21 34
Scene 15 9 19 46
Side 19 15 26 191
Soil 10 5 10 10
Strain 31 13 32 48
Test 15 7 7 89

Mean 17.50 13.10 20.05 67.25

Table 3
Upper bounds (F-measure in %) for SemEval 2010 test dataset, obtained with different
translation dictionaries: external dictionary (column ExtDic), dictionary based on the
Multilingual Central Repository (column MCR), BabelNet-based dictionary (column
BabelNet), complete GIZA++ dictionary (column GIZA) and pruned GIZA++ dictionary
(column GIZA10). Last column represents results obtained by the gold standard
without considering multi-word translations. Bold represents best results for each
word without taking the gold standard into account.

Upper bounds 2010

Word ExtDic MCR BabelNet GIZA10 GIZA Gold

Coach 63.17 58.31 76.89 76.89 76.89 96.60
Education 77.82 77.82 80.88 84.13 94.00 98.19
Execution 53.26 53.26 62.94 67.77 80.00 89.35
Figure 46.97 44.27 49.02 62.63 84.90 95.03
Job 54.38 31.55 53.01 61.58 74.10 83.02
Letter 37.51 37.51 40.94 42.68 57.66 93.19
Match 46.74 55.79 55.79 26.41 71.80 99.71
Mission 55.06 55.06 55.06 56.19 76.12 99.18
Mood 14.20 23.27 26.42 62.32 68.97 77.64
Paper 39.45 25.41 28.08 43.33 64.92 97.69
Post 47.27 37.28 49.46 16.94 39.30 83.57
Pot 55.15 32.37 45.57 38.60 48.71 89.70
Range 17.66 15.15 21.29 17.96 45.44 84.77
Rest 30.90 33.27 34.85 26.08 36.48 89.73
Ring 42.04 29.00 30.49 50.65 66.86 98.83
Scene 42.46 42.46 46.88 61.44 80.86 90.08
Side 40.55 33.26 36.30 43.28 70.43 84.98
Soil 63.06 63.06 73.69 98.07 98.07 99.27
Strain 26.55 26.55 39.02 67.07 83.17 93.41
Test 68.92 59.11 66.38 80.20 87.00 95.22

Mean 46.16 41.69 48.65 54.22 70.28 91.97
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We use the F-measure value for illustrating the results
achieved, and for comparing them with other systems participat-
ing in the SemEval competitions.

Regarding the datasets, Table 2 offers more information about
the statistics of the dictionaries, focused on the 20 words compos-
ing the datasets. More specifically, it shows the number of transla-
tions offered by each dictionary for each possible target word in
the test datasets.

The table clearly shows the differences in number of transla-
tions for each target word depending on the bilingual dictionary.
We can observe that the external dictionary, the dictionary based
on MCR and the dictionary based on BabelNet present similar
behaviour. In the three cases, the word which presents the highest
number of translations is ‘‘pot’’, while the word ‘‘mood’’ presents
the lowest number of translations for the MCR and BabelNet dic-
tionary, and the second lowest for the external dictionary. On the
other hand, the behaviour of the GIZA++ dictionary is completely
different, as the word presenting the highest number of transla-
tions is ‘‘side’’ and the word presenting the lowest number is
‘‘coach’’. These differences can be due to the automatic nature of
the dictionary generated with GIZA++. The other dictionaries pre-
sent human intervention in their construction, which can lead to
a different number of translations. Apart from this fact, it is impor-
tant to notice the high number of possible translations produced in
the GIZA++ dictionary, which may lead to decrease the perfor-
mance. To avoid this decrease, we also considered a restricted
GIZA-based dictionary, with a maximum of ten possible transla-
tions per word. These ten translations are those that present the
highest probabilities of occurrence. Some experiments regarding
the value of maximum translations per word have been done,
showing that a pruning value of ten translations per word provides
the best results. This dictionary will be denoted as ‘‘GIZA10’’ along
the rest of the paper.

5. Analysing the influence of the dictionaries on an ideal system

A good indicator for understanding how the dictionary can
modify the performance of a system in a CLWSD task is the highest
score that could be achieved by a perfect system for a given
dictionary. In this particular case, we define the upper bound for
a given dictionary as the best result that a system that uses this
dictionary can achieve, according to the gold standard. Since we
are working with datasets from two past competitions, we have
access to the gold standards used for the evaluation. Then, for
building the best guessing that a system could give, we take for
every context of every target word those translations from the dic-
tionary that are also in the solution provided by the gold standard.
If there are words in the gold standard for this context that are not
present in the dictionary, random words are selected to complete
the requested five word guessing. In the proposed dictionaries
we do not take into account those translations that contain more
than one word.

Tables 3 and 4 show the highest precision, for each word in
average, that can be achieved by any system using the five consid-
ered dictionaries. The last column represents an upper bound
obtained by applying the same process to the gold standard itself,
but excluding from the proposed solution those translations con-
taining more than one word, since the co-occurrence graph used
in CO-Graph only considers one-word translations (nodes of the
graph represent one single word). Specifically, Table 3 shows the
results for the 2010 test set, and Table 4 the results for the 2013
test set.

The dictionary obtained with GIZA++ and without restrictions
(Column GIZA) is the resource that would allow an ideal system
to obtain the best results. However, due to the noise that the high
number of translations of the dictionary induces, in the rest of the
work we will use GIZA10. In the tables we can also observe that the
dataset for 2013 ideally allows the systems to achieve better
results, as the upper bounds are higher in all cases. The last
column, representing the modified gold standard (without transla-
tions containing more than one word), gets close to a perfect per-
formance. However, its accuracy is not 100% due to the mentioned
exclusion of multi-word translations. Hence, it provides some clues
about the reduction of accuracy due to this exclusion. There are
some words for which the external dictionary obtains a higher
upper bound than the GIZA++ dictionary (‘‘post’’ and ‘‘pot’’). This
may be due to the specific characteristics of those words (number
of translations, differences between translations, . . .). Overall, most



Table 4
Upper bounds (F-measure in %) for SemEval 2013 test dataset, obtained with different
translation dictionaries: external dictionary (column ExtDic), dictionary based on the
Multilingual Central Repository (column MCR), BabelNet-based dictionary (column
BabelNet), complete GIZA++ dictionary (column GIZA) and pruned GIZA++ dictionary
(column GIZA10). Last column represents results obtained by the gold standard
without considering multi-word translations. Bold represents best results for each
word without taking the gold standard into account.

Upper bounds 2013

Word ExtDic MCR BabelNet GIZA10 GIZA Gold

Coach 76.50 73.53 83.83 83.83 83.83 100.00
Education 77.17 76.83 75.34 83.83 88.98 92.67
Execution 50.29 50.29 65.53 61.48 75.81 86.68
Figure 57.49 52.77 56.00 69.55 88.83 99.53
Job 66.93 40.54 56.99 63.51 76.54 84.34
Letter 59.06 59.06 60.21 62.00 76.49 97.23
Match 48.63 50.17 50.17 23.20 76.67 95.03
Mission 71.78 71.78 71.78 78.99 92.06 100.00
Mood 25.03 29.20 34.20 67.78 74.28 80.00
Paper 65.47 52.79 54.54 65.23 77.33 99.71
Post 76.90 59.15 65.89 34.67 48.68 96.99
Pot 58.97 29.67 55.47 26.37 29.20 82.80
Range 28.64 21.75 26.19 21.30 50.31 87.98
Rest 35.19 39.14 42.87 25.78 40.30 91.08
Ring 69.37 53.36 54.65 59.86 72.23 100.00
Scene 42.67 42.67 51.00 65.94 86.06 90.69
Side 53.75 47.03 48.27 59.62 80.65 93.70
Soil 76.81 76.81 86.49 96.60 96.60 100.00
Strain 27.40 27.40 44.44 63.66 86.30 94.32
Test 74.55 65.29 71.66 76.21 81.19 91.96

Mean 57.13 50.96 57.78 59.47 74.12 93.24
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of the words present significant potential improvements in their
upper bounds when we use the GIZA++ dictionary. A deeper analy-
sis regarding the words which present better performance with the
other dictionaries is done in Section 6. Comparing Tables 3 and 4
Fig. 3. Example of the construction of the upp
with Tables 1 and 2 we observe a direct correlation between the
translation average in a dictionary and the performance (average
F-measure) of an ideal system using that dictionary. As the upper
bounds are basically representing the coverage of each dictionary
(the maximum performance that could be achieved), this correla-
tion is expected: as the number of possible translations increases,
the probability of covering more words from the gold standard is
higher, and hence the ideal performance of the system also
increases.

Fig. 3 shows an example of the process of construction of the
upper bounds for any dictionary. Given a sentence and its gold
standard, we extract from the dictionary those words (highlighted
in bold letters in the example) that appear in the gold standard.
The rest of the words, until five, are randomly selected from those
proposed by the dictionary. In the example, the external, MCR and
BabelNet dictionaries contain two words appearing in the gold
standard (‘‘escena’’ and ‘‘panorama’’). On the other hand, the
GIZA10 dictionary contains three coincident words (‘‘ambito’’,
‘‘escena’’ and ‘‘panorama’’). Hence, an ideal system based on GIZA
would obtain a better result for this particular instance.

6. Error analysis

In this section we intend to analyse in detail the results offered
by Tables 3 and 4. In particular, we want to focus on the results
obtained by the ideal system using the GIZA10 dictionary. We
can observe in the tables that there are some words for which
other dictionaries ideally outperform the GIZA10 approach. We
analyse the translation probabilities provided by this dictionary
in order to look for possible explanations of this issue. Table 5 con-
tains the number of translations of each word in the complete
GIZA++ dictionary. After pruning the dictionary and obtaining the
GIZA10 dictionary, we calculate the mean and standard deviation
of the translation probabilities for each target word.
er bounds for the considered dictionaries.



Table 5
Statistics for translations of words in the datasets. Second column contains the
number of translations, third column the mean of the translation probabilities of the
ten most probable translations, and fourth column the standard deviation of the same
ten translations. Bold represents words for which the GIZA10 approach does not
overcome the other dictionaries in neither SemEval test dataset (2010 nor 2013).

Word Trans. (GIZA) Mean (GIZA10) SD (GIZA10)

Coach 8 0.136 0.255
Education 52 0.093 0.206
Execution 30 0.104 0.301
Figure 146 0.100 0.225
Job 133 0.142 0.203
Letter 46 0.106 0.240
Match 101 0.098 0.174
Mission 35 0.186 0.379
Mood 32 0.118 0.087
Paper 64 0.158 0.219
Post 72 0.129 0.219
Pot 21 0.114 0.145
Range 100 0.103 0.088
Rest 87 0.071 0.162
Ring 34 0.116 0.134
Scene 46 0.111 0.129
Side 191 0.105 0.171
Soil 10 0.126 0.295
Strain 48 0.109 0.057
Test 89 0.094 0.184

Table 6
Results (F-measure in %) obtained over 2010 and 2013 SemEval test datasets, for the
out-of-five evaluation. Columns 2–5 contain the results achieved by the CO-Graph
system when using the different bilingual dictionaries (external, MCR-based, BabelNet-
based and GIZA++ pruned to ten translations per word). Last column represents the
results obtained by the MFS (Most Frequent Sense) approach. Bold represents values
obtained by the best approach, for each competition (2010 and 2013).

Competition ExtDic MCR BabelNet GIZA10 MFS

SemEval 2010 37.04 33.94 34.60 42.03 44.02
SemEval 2013 43.87 41.35 38.95 47.06 49.75
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We focus on those words for which other dictionaries (external,
MCR-based or BabelNet-based) obtain better results for ideal sys-
tems, in both test datasets (SemEval 2010 and SemEval 2013).
Those words are ‘‘match’’, ‘‘post’’, ‘‘pot’’, ‘‘range’’ and ‘‘rest’’. We
can observe that four of those five words (excluding ‘‘post’’) present
low mean (around 0.1) and low standard deviation (below 0.18).
These facts (specially the low standard deviation) indicate that
most of the translations have similar probability of occurrence, that
is, the distribution adopts similar values. Hence, it is more likely
that some important translations that also have a similar probabil-
ity of occurrence, although slightly smaller, were discarded when
the GIZA++ dictionary was pruned. Other words that present similar
characteristics, such as ‘‘ring’’, also present worse performance in
ideal systems using GIZA10, but only in one of the test datasets
(in this case, SemEval 2013).

7. Dictionary comparison on a particular unsupervised CLWSD
system: CO-Graph

Once we have compared the behaviour of different dictionaries
inside an ideal system, we want to consider those dictionaries
inside the specific unsupervised CLWSD system described in Sec-
tion 2. As it is stated before, the unsupervised graph construction
algorithm on which the system relies depends on an initial thresh-
old value for the p-value p. This threshold has to be determined in
order to indicate the highest value of p for which the number of co-
occurrences of two words is considered to be statistically sig-
nificant and therefore a link is created between them.

In previous experiments, we used the trial dataset provided in
the SemEval 2010 competition for analysing the influence of the
threshold in an exhaustive way. We varied the threshold from
p ¼ 10�5 to p ¼ 10�17 and obtained F-measure results for all the
p-values. Higher values of p lead to huge graphs that usually
become unmanageable in terms of time and memory consumption.
As the threshold decreases, the graph becomes more restrictive, and
hence presents less nodes and less edges linking nodes. This restric-
tiveness of the graph can lead to better results, as we gain some
specificity, but when the graph becomes too restrictive the perfor-
mance of the algorithm may decrease. In those previous experi-
ments, best results were achieved with values of the threshold
between p ¼ 10�5 and p ¼ 10�11. Within this smaller range of
thresholds, the F-measure values are quite similar. According to
this, we have selected a threshold value of p ¼ 10�11 for all the
experiments in this section. This value is inside the range that offers
the best results, and allows us to deal with a smaller graph. By
selecting a fixed threshold, we want to test the robustness of our
system under the same conditions that the systems participating
in the SemEval competitions. This selection of a specific value for
all the cases eliminates the risk of overfitting, since known gold
standard data are not used for adjusting parameters.

Since we are performing a comparison between systems, it is
useful to consider a baseline for studying whether the proposed
systems are able to outperform it. We take as a baseline the results
obtained by a system that would return the five most frequent
translations for the target word, according to the GIZA++ dictionary.
This approach will be denoted as Most Frequent Sense or MFS along
the rest of the paper.

Table 6 shows the performance achieved by CO-Graph, using
the different considered dictionaries for both the 2010 and 2013
test datasets. It also contains the results obtained with the MFS
approach, for the same datasets.

The results clearly show, on one hand, that the test dataset for
the 2013 competition allows the system to obtain a higher perfor-
mance. This is basically due to the use of the same words as in the
2010 competition, but modifying the contexts for evaluation. As
we can observe, all approaches improve their performance from
2010 to 2013. On the other hand, we can observe that, as we expect-
ed, the use of the GIZA10 dictionary, allows the system to improve
the results, when compared to those obtained with the other three
dictionaries. We observe that the F-measure achieved by the system
using a particular dictionary is directly proportional to the average
number of translations for each word in the dictionary, in a similar
way to what happened with the ideal systems. As we stated above,
we performed different tests regarding the pruning value of the
GIZA++ dictionary, observing that when more than 10 words were
used as maximum number of translations for each word, the perfor-
mance of the system decreased. Hence, the key point of pruning the
GIZA++ dictionary is to find a large enough maximum number of
translations (coverage of the problem) that does not introduce too
much noise into the system. Table 6 shows that the value of 10
translations per word offers good results. Since we select those
translations with highest probability of occurrence, the overall per-
formance of the system is better than that achieved when using the
MCR-based dictionary for instance, a dictionary that uses a similar
(average) number of translations for the target words in the data-
sets (see Table 2). Still, the Most Frequent Sense technique outper-
forms any of the proposed approaches. This fact indicates that when
more than five translations are considered, the system does not
effectively choose the most suitable ones. However, a deeper analy-
sis of the F-measure per individual word indicates that there are
words for which GIZA++ outperforms the results of the MFS
approach. Hence, a good step at this point would be the develop-
ment of a hybrid system that combines the translations proposed
by the MFS approach, and those proposed by the system.



Fig. 4. Example of the behaviour of the hybrid system which combines the output of CO-Graph with the translation probabilities given by GIZA++.

Table 7
Final results (F-measure in %) obtained over 2010 and 2013 test datasets. Bold
represents values obtained by the best approach, for each competition (2010 and
2013).

Data ExtDic MCR BabelNet GIZA10 MFS Hybrid

2010 37.04 33.94 34.60 42.03 44.02 47.41
2013 43.87 41.35 38.95 47.06 49.75 53.33
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8. Hybrid approach

As we can confirm in Table 6, the Most Frequent Sense (MFS) is
a baseline that has been proved difficult to overcome in many
CLWSD tasks, including those under analysis in this work. More-
over, these tasks use a MFS approach based on a specific corpus
used to represent knowledge, and hence its performance is even
better than a MFS approach based on a more generalist corpus.
The MFS can be extracted in an automatic way with the GIZA++
tool and has a different nature than the weights assigned by the
CO-Graph system to each translation. This fact can be used in a
hybrid approach for enriching the information given by the disam-
biguation algorithm. Hence, the combination of the weights given
by the system and the probabilities given by GIZA++ may offer
better results than those obtained by the original approach of
our system and may also overcome the MFS approach. The intu-
ition behind this hybrid approach is based on what we stated in
Section 6: when the values of the probabilities of translations from
a target word are quite different (their standard deviation is high),
CO-Graph is able to obtain a good performance, both in cases in
which selecting the most frequent senses offer good results, and
in cases in which the best translations do not present the highest
probabilities. However, when this standard deviation of the prob-
abilities is low, that is, when the distribution tends to be flat, CO-
Graph can get lost, and hence the MFS information obtained from
GIZA can be very useful. According to this intuition, our approach
combines, for every potential translation, the weight according to
CO-Graph, and the probability of translation, according to GIZA++.
A final score is then assigned to each of the ten potential transla-
tions provided by the dictionary. Specifically, we consider
T ¼ ðt1; t2; . . . ; tnÞ to be the set of most likely potential translations
provided by GIZA++ for a given target word, where n <¼ 10. Each
translation ti has an associated probability pi. After applying the
disambiguation process, CO-Graph assigns a weight wi to each of
the potential translations. The final score of each translation si,
which will be used for selecting the most appropriate translations
for evaluation, is given by si ¼ piwi. Fig. 4 shows an example of the
behaviour of the hybrid approach.

Table 7 completes Table 6 with the results, for the 2010 and
2013 datasets, obtained by the proposed hybrid approach.

The new column with respect to Table 6, Hybrid, contains the
results for both datasets using the hybrid approach. We can
observe that, for both datasets, the hybrid approach gets better
results than the MFS approach. The performance of the system
increases about 3.5 points for the 2010 and 2013 datasets. More-
over, the improvement over the system that uses the pruned GIZA
dictionary is more than 5 points in the 2010 dataset and more than
6 points in the 2013 dataset. A two-tailed paired t-test for statisti-
cal significance testing has been performed over the results in the
table. According to this test, the results obtained by the hybrid
approach are significantly better than those obtained by the sys-
tem using only any of the bilingual dictionaries. Also, in the 2010
dataset, the differences between the hybrid approach and the
MFS approach are statistically significant, whereas in the 2013
dataset, although the results are also better, the significance is
not achieved.

As we have stated along the whole paper, we have used only
nouns for building the co-occurrence graph of the CO-Graph sys-
tem, and for extracting the context of the target word in each test
sentence. A last experiment was conducted for testing whether the
selection of other important category of words, in this case verbs,
could improve the overall performance of the system. For this pur-
pose, a new co-occurrence graph that also considered verbs was
built, and the disambiguation process was repeated for all the test
instances, extracting also verbs from the context. Table 8 shows
the comparative between results obtained by the system using
only the best dictionary (GIZA10) and by the hybrid system, both
using only nouns and using nouns and verbs for building the graph
and extracting the context.

As we can observe, the inclusion of verbs in the construction of
the graph does not improve the results. Including new words in the
graph may lead to bigger, more difficult to handle graphs, and
hence to more difficulties in the disambiguation process. Also, it
is important to indicate that most of the target words in the test
instances can be translated as nouns. Therefore, the increase of
coverage that could be achieved by including verbs in the



Table 8
Comparative between results obtained by the best performing configurations of the
system (GIZA10 and Hybrid), using only nouns for building the graph and extracting
the context, and using nouns and verbs for these processes. Results (F-measure in %)
for the 2010 and 2013 test datasets. Bold represents values obtained by the best graph
configuration (nouns, or nouns and verbs), for each approach (GIZA10 and Hybrid)
and competition (2010 and 2013).

Words GIZA10 Hybrid

SemEval 2010
Nouns 42.03 47.41
Nouns + Verbs 34.70 45.00

SemEval 2013
Nouns 47.06 53.33
Nouns + Verbs 39.58 51.33

Table 9
Comparison of the F-measure (%) achieved by the unsupervised systems participating
in task 3 of SemEval 2010, and by the hybrid approach of our system (row Hybrid).
The best participating system (even if supervised) is shown in row Best, while the
baseline proposed by the organizers is shown at the bottom of the table, in row
Baseline. Bold represents the best unsupervised system among those participating in
the task and the proposed hybrid approach. Best participating system, if supervised,
and baseline are not considered for comparison.

System Task 3 SemEval 2010

Best 43.12

Hybrid 47.41
T3-COLEUR 35.65
UHD-1 34.95
UHD-2 34.22

Baseline 48.41

Table 10
Comparison of the F-measure (%) achieved by the unsupervised systems participating
in task 10 of SemEval 2013, and by the hybrid approach of our system (row Hybrid).
The best participating system (even if supervised) is shown in row Best, while the
baseline proposed by the organizers is shown at the bottom of the table, in row
Baseline. Bold represents the best unsupervised system among those participating in
the task and the proposed hybrid approach. Best participating system, if supervised,
and baseline are not considered for comparison.

System Task 10 SemEval 2013

Best 61.69

Hybrid 53.33
LIMSI 49.01
XLING snt 44.83
XLING merged 43.76
XLING tnt 39.52
NRC-SMT adapt2 41.65
NRC-SMT basic 37.98

Baseline 53.07
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translations may not compensate the probable loss of precision
due to the need of dealing with bigger graphs.

Tables 9 and 10 show the comparison between results obtained
using the hybrid approach, and those obtained by other unsuper-
vised systems participating in the 2010 (Table 9) and 2013
(Table 10) CLWSD competitions. The results obtained by the best
participating system (even if supervised) are also shown, as well
as the baselines proposed in the competitions.

As we can observe, in both cases the hybrid approach
outperforms the results obtained by other unsupervised systems.
More specifically, the unsupervised systems in the 2010 task
were the T3-COLEUR system, based on probability tables, and
the UHD system, also based on co-occurrence graphs, but with
different techniques for extracting the knowledge from the graph
to perform the disambiguation. In the 2010 competition, we can
also see that the best participating system (supervised) is also
outperformed by the hybrid system. However, the baseline
proposed by the organizers is still the best ‘‘system’’ in the task.
We consider that this baseline provided by the organizers must
be an unrealistic approach to the problem, since not even
supervised techniques are able to outperform it. In 2013, the
unsupervised participants were the vector-based LIMSI system,
the XLING system, using topic modelling techniques, and the
NRC system, based on a statistical machine translation approach.
Regarding this dataset, we observe that the best (supervised)
system is better than our hybrid approach. In this case, the
proposed baseline is outperformed by our system, but not by
any of the unsupervised systems that participated in the
competition.
9. Conclusions and future work

We have analysed the effect of the translation dictionary in the
performance of a Cross-Lingual Word Sense Disambiguation sys-
tem. The results obtained within an ideal framework indicate that
when the dictionary is generated in a statistical automatic way
from a corpus large enough to represent the characteristics of a
language, the potential results for a disambiguation task are bet-
ter. The best ideal results are achieved when considering all the
possible translations obtained. However, this induces too much
noise. Accordingly, the number of potential translations for each
word has been pruned to the ten most probable ones for building
the GIZA10 dictionary. For some target words, the other dictionar-
ies are able to outperform the results obtained by an ideal GIZA-
based dictionary. This fact can be due to the nature of the set of
translations that GIZA extracts for each word: when too many
translations are extracted, and their probabilities are similar, the
coverage that can be achieved by a dictionary containing ten
translations per word can be compromised. Nevertheless, the
GIZA10 dictionary has been shown to be the best dictionary in ide-
al conditions. This selection has been confirmed using a particular
CLWSD system. CO-Graph has been tested over the four different
dictionaries, and the results have been compared to those
obtained by a Most Frequent Sense (MFS) baseline. In this case,
the GIZA10 dictionary has also proven to be the best choice among
the analysed dictionaries for solving the CLWSD tasks. However,
the MFS approach still outperforms its results. Considering this
fact, and the unsupervised nature of the MFS approach, a hybrid
approach has been built, using outputs from both CO-Graph and
the MFS approach. The results obtained by this hybrid approach
outperform the MFS reference baseline, and the other unsuper-
vised systems participating in the 2010 and 2013 CLWSD compe-
titions from SemEval. The main conclusion is that statistical
information related to the possible translations of the target
words, is a key knowledge for systems performing CLWSD.
Accordingly, this way of selecting the candidate translations can
be considered as one of the best options for unsupervised CLWSD
systems.

Future work includes the refinement of the hybrid system by
modifying the formula that determines the final score of each
potential translation. Also, a deeper exploration of the dictionary
extracted with GIZA++ is needed, in order to include more possible
translations that would ideally allow the system to reach higher
accuracy, as Tables 3 and 4, and Section 6 suggest. Following this
intuition, a good approach could be not restricting the number of
translations per word to a fixed value, but varying that value
depending on the statistical characteristics of the translations.
The use of multi-word translations could improve the upper
bounds of the dictionary, and hence the final results obtained by
a CLWSD system. Finally, more work needs to be done in order
to expand this work to other languages.
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