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Abstract In this paper we generalize the Continuous Adversarial Queuing Theory
(CAQT) model (Blesa et al. in MFCS, Lecture Notes in Computer Science, vol. 3618,
pp. 144–155, 2005) by considering the possibility that the router clocks in the network
are not synchronized. We name the new model Non Synchronized CAQT (NSCAQT).
Clearly, this new extension to the model only affects those scheduling policies that
use some form of timing. In a first approach we consider the case in which although
not synchronized, all clocks run at the same speed, maintaining constant differences.
In this case we show that all universally stable policies in CAQT that use the injec-
tion time and the remaining path to schedule packets remain universally stable. These
policies include, for instance, Shortest in System (SIS) and Longest in System (LIS).
Then, we study the case in which clock differences can vary over time, but the max-
imum difference is bounded. In this model we show the universal stability of two
families of policies related to SIS and LIS respectively (the priority of a packet in
these policies depends on the arrival time and a function of the path traversed). The
bounds we obtain in this case depend on the maximum difference between clocks.
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This is a necessary requirement, since we also show that LIS is not universally stable
in systems without bounded clock difference. We then present a new policy that we
call Longest in Queues (LIQ), which gives priority to the packet that has been waiting
the longest in edge queues. This policy is universally stable and, if clocks maintain
constant differences, the bounds we prove do not depend on them. To finish, we pro-
vide with simulation results that compare the behavior of some of these policies in a
network with stochastic injection of packets.

Keywords Scheduling · Continuous adversarial queuing theory · Adversarial
models · Clock skew · Clock drift · Clock synchronization

1 Introduction

Stability is a requirement in a packet switched network in order to be able to provide
some quality of service. Stability means that the amount of traffic that is being routed
in the network is always bounded. It is well known that an appropriate scheduling of
packets is fundamental in order to guarantee stability [3]. A fundamental question is
to identify scheduling policies that are able to guarantee stability, and among these,
policies that guarantee good quality of service (e.g., latency).

The study of the capability of scheduling policies to guarantee stability under
worst-case situations has been done with adversarial models [3, 6–8, 10]. In these
models, the arrival of packets to the network is controlled by an adversary which de-
fines, for each packet, the instant and node in the network where it is injected, and
very often, its path in the network. To avoid the overload of links in the network,
the number of packets that the adversary can inject is bounded. As we said, the main
objective of these models is to explore the ability of scheduling policies at the routers
to maintain the system stable or provide good quality of service even in the worst
conditions.

1.1 Adversarial Models

In this general framework two main adversarial models have been defined. In the Per-
manent Session Model [7, 8, 10], also known as the (σ,ρ)-regulated injection model,
all the traffic in the network is grouped in sessions, whose route and maximum packet
injection rate are defined by the adversary. The adversary is restricted on the rates σi

that it can assign to sessions in the sense that the total rate of the sessions that cross
a link does not saturate the link. Additionally, the adversary is in control of the ar-
rival of packets. The adversary always tries to create instability or to increase the
maximum latency experienced by packets. There have been many works exploring
this model, and proposing stable policies with different guarantees of quality of ser-
vice (e.g., [7, 8, 10–12]). It is also interesting to observe that, in this model, FIFO (or
FCFS), which is the most popular scheduling policy by far, can be made unstable at
any constant network load [1].

The Temporary Session Model, commonly known as the Adversarial Queuing
Theory (AQT) model [3, 6], relaxes the restriction that packets are assigned to ses-
sions. This relaxation is similar to allowing the adversary to dynamically change the
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sessions over time. In this model, each packet is injected with its own path and the
only restriction on the adversary is that it cannot overload any link, in an amortized
sense. The AQT model assumes that the network evolves in steps, and in each step
at most one packet crosses each link. The Continuous AQT (CAQT) model, recently
presented in [5], is an extension of the AQT model in which packets can have arbi-
trary sizes, and links have different bandwidths and propagation delays. This model
is closer to reality than AQT, and due to the fact that AQT is a particular case of
CAQT, the instability results obtained for AQT remain valid for CAQT. Additionally,
it was shown in [5] that many positive results under the AQT model also hold under
the CAQT model. The system model we consider in this paper is strongly based on
the CAQT model.

Time-Based Scheduling Policies From all the policies that have been shown to be
stable in all networks (which we call universally stable) under the AQT and CAQT
models, those that seem to provide the lowest end-to-end packet delays are based on
timing. In fact, it has been shown by Weinard [14] that for any policy in the family
Without-Time-Stamping strategies, there are n-node under-loaded networks in which
the delays and queue sizes are 2�(

√
n). A policy of this family is assumed to know the

network topology, and it assigns the priority of a packet as a function of its path and
the number of edges it already crossed. This implies that, in general, it is convenient to
use some timing information for scheduling. Unfortunately, the simplest time-based
policies, can also suffer of large delays. For instance, for Shortest in System (SIS),
the policy that gives the highest priority to the newest packet in the network, there are
networks in which the delays and queue sizes are 2�(

√
n) [3]. Similarly, for Longest

in System (LIS), the policy that gives the highest priority to the oldest packet in the
network, there are networks with diameter d in which the delays and queue sizes are
2�(d) [2].

The good news are that time-based policies can in fact provide low delay guaran-
tees. For instance, in [3] it is presented a randomized scheduling algorithm that guar-
antees delays polynomial on the network parameters. This algorithm basically uses a
longest-in-system strategy with random permutations. The deterministic scheduling
algorithm with polynomial delays presented in [4] uses a similar approach. Addition-
ally, there are simulation studies [13] which show that LIS may in fact behave much
better in practice than one may expect from the lower bounds mentioned above.

Clocks, Clock Drifts, and Clock Skews The above mentioned results for time-based
scheduling policies are obtained in network models in which it is implicitly assumed
that each node in the network has a local clock to provide the time, and that all these
clocks are synchronized and provide the same time. However, this latter assumption
is not realistic in practice, since the oscillation frequency of each computer timer is
different, what produces different clock drifts. The consequence of these drifts is that
it is not unusual that different clocks provide different times. The differences between
the clock times is what we call clock skews. In practice, in order to limit the effect of
clock drifts, and to bound the clock skews, there are mechanisms, like the Network
Time Protocol (NTP), that allow the resynchronization of clocks.
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The Non-synchronized CAQT Model In this paper we propose a model of adver-
sary in which clocks do not need to be synchronized. We call the new model Non-
synchronized CAQT (NSCAQT), since it is basically the CAQT model with this addi-
tional generalization. Under this model we will study the behavior of different queue
scheduling policies which depend on time and can be affected both by clock skews
and clock drifts. To study these policies, we need to make assumptions on how they
use the local clocks. For instance, for LIS and SIS we will assume that packets are
assigned the local clock value of their injection node at their injection time, value that
they carry with them and is used for scheduling.

In this paper we will study three main variations of the NSCAQT model. In the
first one we assume that the system has clock skews but no clock has drifts. Hence,
in this model clocks do not have the same time, but their time differences remain
constant. We call this the NSCAQT model with constant skews. The second model we
will study is a model in which skews can vary over time, but there is a bound on the
maximum difference between the time of the clocks. We call this model the NSCAQT
model with bounded skews, and is very suited to model a network in which a protocol
like NTP is used to periodically resynchronize all the clocks. The third model we
explore has constant drifts and no resynchronization mechanism guarantees that the
skews are bounded. We call this model the NSCAQT model with constant drifts.

1.2 Contributions

The main contribution of this work is the detailed definition of a model in which
clocks need not be synchronized. We have not found a model that considers this pos-
sibility in any previous adversarial model. Then, the first result we provide is on the
NSCAQT model with constant skews. We study under this model scheduling policies
that assign priorities to packets based on their injection times and their remaining
paths. For these policies we will show how the NSCAQT system can be transformed
into a CAQT system by changing the topology of the network and the adversary. As a
consequence, we conclude that any such policy that is universally stable under CAQT
is also universally stable under NSCAQT with constant skews.

We then explore universal stability under the NSCAQT model with bounded
skews. We first define two families of policies that include SIS and LIS, respec-
tively, as special cases. Then we show that all the policies in these families are uni-
versally stable in this model. We call these families Shortest in System considering
Path (SISP) and Longest in System considering Path (LISP) respectively. The policies
from these families assign packet priorities depending on both the injection time and
a function of the packet path and the number of edges it already traversed.

Unfortunately, for the universally stable policies that we identified with the previ-
ously mentioned results, all the upper bounds on delays and queue sizes that we could
prove depend on the clock skews. In fact, in several cases it can be easily shown that
these parameters become larger as the skews grow. Then, the question is whether
there are policies whose performance does not depend on the clock skews. We in-
troduce a new policy, Longest in Queues (LIQ), which gives priority to the packet
that has been waiting in queues the longest. We show that this policy is universally
stable in the NSCAQT model with bounded skews. More interestingly, we show that
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in the NSCAQT model with constant skews this policy has an upper bound on the
end-to-end delay that does not depend on the skews and is close to that of LIS in
CAQT.

Finally, we present some simulations which try to shed some light on the behavior
of LIS, SIS, and LIQ in a network with stochastic arrival patterns, instead of adver-
sarial, in the NSCAQT model with constant skews. The results show that, as expected
by analysis, LIQ is not affected by the clock skews, and presents the best performance
from among the three policies.

1.3 Structure

The structure of the rest of the paper is the following. In Sect. 2 we define the
NSCAQT model in detail and introduce some notation to be used on the paper. In
Sect. 3 we study stability under the NSCAQT model with constant skews. In Sect. 4
we study the policies in SISP and LISP under the NSCAQT model with bounded
skews. In Sect. 5 we show the instability of LIS in the NSCAQT model with con-
stant drift. In Sect. 6 we explore the performance of LIQ under the NSCAQT models.
Finally, in Sect. 7 we present the simulations that have been done.

2 System Model

Like most previous adversarial network models, the NSCAQT system model has
three major elements: an underlying network G , a scheduling policy used P , and
an adversary A. With these elements, the evolution of the system can be seen as a
game between the adversary, which injects packets in the network trying to create
instability, and the scheduling policy, that decides which packets move along their
paths in the network, trying to prevent instability. The model of system considered in
this paper is a direct extension of that presented in [5].

The Network In this model a network is modeled by a directed graph G , formed
by a set of nodes V (G), representing the hosts and routers, and a set of edges E(G),
representing links between the nodes.1 Each link e of the network has associated a
positive finite bandwidth Be , which determines the transmission speed of the link,
and a finite propagation delay Pe ≥ 0. We use a specific notation for the largest
propagation delay and smallest bandwidth as follows: Pmax = maxe∈E(G){Pe} and
Bmin = mine∈E(G){Be}. (Since G is finite, these values are well defined.)

The Bounded Adversary In a system with network G , the adversary A defines the
traffic pattern, continuously deciding which packets are injected. Additionally, for
each packet p, the adversary chooses the moment of injection T0(p), the source node
v0(p), the destination node vdp (p), and the path the packet has to traverse �(p) =
(e0(p), e1(p), . . . , edp−1(p)). (When clear from the context, we may omit the packet
p from the notation.) Notice that dp represents the length of the path packet p has to

1Throughout the paper we use interchangeably the terms link and edge.
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Fig. 1 Path �(p) assigned to a packet p in the network

traverse. We assume that a packet path is edge-simple, i.e. it does not contain the same
edge more than once, although it can visit the same node several times.2 We denote
by dmax the length of the longest path of a packet, which is clearly open bounded by
the length of the longest edge-simple path in the network. In Fig. 1 we represent the
path assigned to a packet p.

Although the adversary controls the traffic arrival, it is restricted on the load that
it can inject to the system. We assume that the injection of a packet is instantaneous.
Then, if Ne(I) represents the number of bits of the packets which want to cross edge
e injected by A during an interval I , it must satisfy that

Ne(I) ≤ r|I |Be + b = (1 − ε)|I |Be + b (1)

for every edge e and for every time interval I . We denote by r , 0 < r ≤ 1, the long
term rate (load) the adversary can impose on the system. For convenience we some-
times use the notation r = 1 − ε, for ε ≥ 0. The parameter b, b ≥ 1, is the burstiness
allowed to the adversary injections, which is the excess of bits allowed to arrive at any
time during the complete game. An adversary that satisfies this condition is called an
(r, b)-adversary.

Packets, Queues, and Buffers Packets are sequences of bits of possibly different
sizes. We denote by Lp the size in bits of a packet p and by Lmax the maximum size
of a packet. Because of the above restriction (1) on the adversary and the assump-
tion of instantaneous injection of packets, it can be easily observed that Lmax ≤ b.
Note that b is also an upper bound on the number of packets that the adversary can
inject instantaneously (which is achieved in the improbable case that all packets have
size 1).

Packets in the system follow their path traversing one edge after the other toward
their destination. As explained in [5], in every node in the network there is a reception
buffer for each edge entering the node and an output queue for each edge leaving the
node. The output queue of an edge has unbounded capacity and holds the packets that
are ready to cross this edge. The scheduling policy of the edge’s output queue chooses
the next packet to cross the edge from those in this output queue. The reception buffer
is used to store the received portion of a packet until it has been completely received.
Then, the packet is placed instantaneously by a dispatcher in the corresponding output
queue or it disappears from the system if it already reached its destination.

2This assumption does not decrease the generality of the model in terms of universal stability of policies,
since it is known that a system in which packets may traverse the same edge several times can be simulated
by another system with only edge-simple paths [1].
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Note that once a packet p starts to cross edge e, it will spend Lp

Be
+ Pe units of

time to completely cross it. As parameter of the network we have the greatest amount
of time that a packet can spend crossing an edge, denoted Dmax, and defined as

Dmax = max
e∈E(G)

{
Lmax

Be

+ Pe

}
≤ b

Bmin
+ Pmax.

Clocks As we said, the main difference between the NSCAQT model we propose
and previous models [3, 5, 6, 10] is that we consider here the impact of clocks not
being synchronized on the performance. In order to make the model as general as
possible, we assume that the output queue of each edge has its own internal clock,
called edge clock (this is clearly more general than assuming one clock per node).
Additionally, we assume there is an external reference clock which is always on time.
We refer to this clock as the real clock and we say that it provides the real time. We
assume that the adversary has access to both the edge clocks and the real clock, while
the scheduling policy at a given edge has only access to the clock of that edge.

The difference between the real clock and the edge clock of e at real time t is what
we call the clock skew of e’s edge clock at time t , and is denoted by φe(t). Then, if
te denotes the value of the edge clock of e at real time t , we have te = t − φe(t). If
this value changes over time, we say that the edge clock has a drift. If an edge clock
has no drift we omit the time and denote its skew by φe . Note that, at any given time,
the skew of an edge clock can be positive or negative. However, for convenience
we assume that these skews are all non-negative if all edge-clock skews are lower
bounded. We can do this freely since the real clock is not available to the scheduling
policies and does not interfere in the relation between edge clocks.

We denote by Ti(p), 0 ≤ i < dp , the real time at which a packet p arrives to
the output queue of the edge ei(p). Due to clock skews, according to edge ei(p)’s
clock, the instant when packet p arrives to the output queue is Ti(p) − φei(p)(Ti(p)).
Additionally, we denote by Tdp (p) the time at which p is completely received at its
destination and leaves the system.

Scheduling Policies As we said above, the scheduling policy is in charge of decid-
ing, whenever a link e is available, which packet from those in the output queue of e

must be sent next across e. In this paper we only consider distributed work-conserving
time-based scheduling policies. We say that policies are distributed if they do not use
the state (and in particular the clock) of other edges to make scheduling decisions.
Policies are work-conserving (also called greedy) if they always send a packet across
the link as long as the edge’s output queue is not empty. Finally, we only consider
time-based policies, which are policies that use the edge clocks for scheduling. Note
that policies that are not time-based are not affected by clock skews and drifts.

We will only consider in this work systems in which all the queues use the same
scheduling policy. The study of systems under the NSCAQT model in which different
queues may use different scheduling policies is left for future work.

Two of the most studied distributed work-conserving time-based scheduling poli-
cies are Longest in System (LIS) and Shortest in System (SIS). The LIS policy gives
the highest priority to the packet that has been in the system for the longest time,
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while the SIS policy gives the highest priority to the packet that has been in the sys-
tem for the shortest time. These definitions do not clearly show the use these policies
make of the edge clocks. For that, we need to look at the natural implementation of
these policies: upon arrival of a packet p into the system, it is assigned a time-stamp,
TS(p), which p carries with it. Then, the LIS and SIS policies only compare the time-
stamps of the packets to decide which to schedule next. The edge scheduler in LIS
gives the highest priority to the packet with the smallest time-stamp, while in SIS it
gives the highest priority to the packet with the largest time-stamp. Note that when
clocks are not synchronized, these time-stamps are not accurate, since the time-stamp
for a packet p is

TS(p) = T0(p) − φe0(p)(T0(p)).

These two policies have been proved to be universally stable in [5] for the CAQT
model, where φe = 0 for all e ∈ E(G).

In addition to these two well-known policies, we will study two families of policies
derived from SIS and LIS, that we call Shortest in System considering Path (SISP)
and Longest in System considering Path (LISP), respectively. In the policies of these
families, packets carry their time-stamp, and (when needed) the packet path and the
number of links traversed, so that at its edge ei(p), packet p is assigned a priority
label of the form

PL(p, i) = TS(p) + f (�(p), i),

where f (�(p), i) is a function which assigns a real number to each pair formed by
a packet path �(p) and a value i ∈ {0,1, . . . , dp − 1}, being i the number of crossed
edges by the packet in its path. A policy Pf is in SISP (resp. LISP) if at each queue
it gives the highest priority to the packet p with the largest (resp. smallest) value
PL(p, i). Notice that when f (�(p), i) = 0 for all �(p) and i, Pf is equivalent
to SIS (resp. LIS). Since the function f is defined over the finite sets of paths and
number of edges crossed by a packet, it has a maximum and a minimum values, that
we denote by fmax and fmin, respectively.

Finally, we will consider a new policy named Longest in Queues (LIQ). In this
policy the highest priority is assigned to the packet that has been waiting the longest
in all the output queues it has visited. In our model NSCAQT, in which clocks are not
synchronized, we assume that the time in queues is measured locally at each output
queue. The time a packet p waits at the edge e’s queue is the difference between the
value of the edge clock when the packet arrives and the value when it starts being
transmitted, or the current value of the edge clock if it is still waiting. The time used
to schedule p is the sum of these waiting times in all the visited queues.

2.1 System Stability

To study stability and performance in packet switching networks, we introduce the
concept of a (G, P , A) system to represent the game played between an adversary A
and the packet scheduling policy P over the network G . In the NSCAQT model, a
system (G, P , A) is stable if the maximum number of packets (or bits) present in the
system is bounded at any time by a constant that may depend on system parameters:
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the network, the adversary or the policy. A policy P is universally stable if the system
(G, P , A) is stable on every network G and against every (r, b)-adversary A with
r < 1 and b ≥ 1.

3 Stability of Policies for Constant Clock Skews

In this section we study the case in which all the edge clocks have zero drift, so that
φe is constant. This framework allows to assure the stability in a non-synchronized
system if there is stability in a synchronized system for many policies, in particular
for those policies that only depend on the injection time and the remaining path of
the packets.

We present a proof by transformation of this case. We start from a (G, P , A) sys-
tem with non-synchronized clocks, where A is an (r, b)-adversary, r ≤ 1. Then, we
vary the network G and the adversary A to obtain a synchronized system (G′, P , A′),
where A′ is an (r, b′)-adversary, so that if (G′, P , A′) is stable, then (G, P , A) is also
stable.

Construction of G′ As we explained in the previous section, since we arbitrarily fix
the real clock, we can do it so that all the clock skews are non-negative. Then, let
G = (V ,E) be a directed graph in the NSCAQT model with constant skew φe ≥ 0 for
each edge clock. We construct G′ starting from G as shown in Fig. 2.

For each edge e ∈ E(G) with φe > 0, let Ke = �b + rBeφe/2�. Then, we add
Lmax × Ke edges and Lmax × Ke nodes. New edges and nodes are denoted el,j

and vl,j , respectively, where l ∈ {1,2, . . . ,Lmax} and j ∈ {1,2, . . . ,Ke}. For all l and
for all j , we place edge el,j from node vl,j to the tail of edge e. For every edge el,j ,
we set the bandwidth to Bel,j = 2l

φe
and the propagation delay to Pel,j = φe

2 .

Remark 1 With this construction process, a packet p of size Lp takes φe

2 units of
time to be fully sent and φe units of time to be fully received across any edge eLp,j ,
j ∈ {1,2, . . . ,Ke}.

Fig. 2 Basic process to transform G into G′
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Construction of A′ We now construct the adversary A′ from A. A packet that is
injected by A at edge e of G with φe = 0 is injected exactly in the same edge at the
same time in G′ by A′. Now, let p be a packet of size Lp that was injected in G by A
at time t , such that φe0(p) > 0. Then, A′ will inject a packet p′ in G′ at time t −φe0(p).
The size of p′ will be Lp′ = Lp and its path will be

�(p′) = (e
Lp,j

0 (p), e0(p), e1(p), . . . , edp (p)),

where e
Lp,j

0 (p) is an edge corresponding to the construction described above. This
edge must satisfy that no other packet has been injected in it in the previous φe/2
time. Since Ke is clearly an upper bound on the number of packets of length Lp that
can be injected in any interval of φe/2 time, and there are Ke edges for each Lp , there
is always a suitable edge to be used.

Under these circumstances, if packet is injected by A in time t in the queue of
edge e, and labeled with an time-stamp of t − φe , a corresponding packet injected by
A′ will arrive to the same queue at the same time t , labeled with the same time-stamp.
Let us now bound the parameters of the adversary A′.

Remark 2 The packets injected by A during an interval of size |I |+φmax are injected
by A′ during an interval I ′ with maximum size |I |. So, since A is an (r, b)-adversary,
A′ is an (r, b′)-adversary, where b′ = b + φmaxBmax, and φmax = maxe∈E(G){φe}.

We can now state the main result of this section.

Theorem 1 Let (G′, P , A′) be the synchronized system in the CAQT model obtained
from the non-synchronized system (G, P , A) through the above process. Let P be a
scheduling policy which considers only the time of injection of the packets and the
paths that the packets still have to traverse. Then, (G, P , A) is stable if and only if
(G′, P , A′) is stable.

Proof Note that the stability of (G, P , A) must occur for any value of the clock
skews, including the case in which all skews are zero. Then, it trivially follows that if
(G, P , A) is stable, (G′, P , A′) is stable as well.

In the other direction, we first have that the queues of the new edges el,j in system
(G′, P , A′) never present contention since, from Remark 1 and by the construction
of the adversary A′, by the time a packet arrives the previous packet (if any) was
already sent. Then, if we observe the output queues of the edges that G′ and G have in
common, we find that similar sets of packets arrive at the same times, with the same
time-stamps, and with the same remaining paths to cross in both systems (G, P , A)

and (G′, P , A′). Since these are the parameters used by P to schedule the packets, we
have that the behavior of these queues in systems (G, P , A) and (G′, P , A′) is exactly
the same. So, if there is no bound on the number of packets in (G, P , A), there is no
bound either on the number of packets in (G′, P , A′). Then we have that if (G, P , A)

is unstable then (G′, P , A′) is unstable or, equivalently, if (G′, P , A′) is stable then
(G, P , A) is stable. �
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Corollary 1 The scheduling policies that are universally stable in CAQT and only
consider the times of injection and the paths that the packets still have to traverse are
universally stable in the NSCAQT model with constant clock skews.

4 Stability of Policies for Bounded Clock Skews

In this section we will study the case in which clocks may experience drifts. Hence,
we assume here that the clock skews are not necessarily constant. However, the max-
imum difference between real time and any edge clock is bounded. As we said, this
model fits naturally with a system in which edge clocks are periodically resynchro-
nized, for instance via NTP.

In this section we will again adapt the real time reference clock, in order to sim-
plify the analysis and the presentation. Like in the previous section, we will as-
sume that all clock skews are non-negative, i.e., for any edge e and any time t ,
φe(t) ≥ 0. Additionally, since we assume that skews are bounded, we can safely de-
fine φmax = maxe,t {φe(t)}.

Under these assumptions, we show that all policies in the families SISP and LISP
are universally stable. Since the model NSCAQT with bounded skews is more gen-
eral, this also shows that these policies are universally stable in the CAQT model
(which was previously unknown in general).

4.1 Universal Stability of SISP

In this subsection we explore the stability of the new family of policies SISP de-
fined in Sect. 2, which is based on the injection time, and the path and number
of edges already crossed by a packet. As described there, a policy Pf in SISP as-
signs to each packet p at the queue of its edge ei(p) a priority label PL(p, i) =
TS(p) + f (�(p), i), and gives the highest priority to the packet with the largest la-
bel.

Now we prove that every policy in SISP is universally stable in the NSCAQT
model when the clock skew is bounded by φmax. We start with the following simple
lemma.

Lemma 1 Let p and q be two packets. If T0(q) > T0(p) + fmax − fmin + φmax, then
p never has higher priority than q in any queue.

Proof Let us assume that p and q meet at the output queue of edge ei(p) = ej (q).
Note that φmax − φe0(q) ≥ 0 and that f (�(q), j) − fmin ≥ 0. Hence,

PL(q, j) = T0(q) − φe0(q) + f (�(q), j)

> T0(p) + fmax − fmin + φmax − φe0(q) + f (�(q), j)

≥ T0(p) + fmax ≥ PL(p, i),

and then PL(q, j) > PL(p, i) for all i and j . �

The proof of universal stability of the policies in SISP we present is very similar
to that of SIS presented in [5] for the CAQT model. We first recall a lemma proved
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there, which limits the time spent by a packet in the queue of an edge e if there are
k − 1 bits in the system with higher priority to cross that edge. The assumptions
and the proof of this lemma do not depend on whether the clocks are synchronized.
Hence, it can be applied directly to our model.

Lemma 2 [5] Let p be a packet that, at real time t , is waiting in the queue of edge e.
At that instant, let k − 1 be the total size in bits of the packets in the system that also
want to cross e and that may have priority over p. Then, p will start crossing e in at
most (k + b)/(εBe) units of time.

Recall that, when a packet p starts crossing an edge e, it spends Pe + Lp/Be ≤
Dmax units of time until it crosses it completely. Then, using this and the previous
lemma recursively we can prove the following result.

Lemma 3 Let k0 = r(φmax + fmax − fmin)Bmax + b, and ki = ki−1 + r(
ki−1+b

εBmin
+

Dmax)Bmax + b, for 0 < i < dmax. When a packet p arrives to the output queue of
edge ei(p), no more that ki − 1 bits can have priority over it in any edge ej (p), for
j ≥ i.

Proof Let us first consider the case i = 0. When a packet p, arrives into the system,
from Lemma 1, the packets that may have priority over it have been injected at most
φmax +fmax −fmin units of time earlier than p, because, although they maybe arrived
to the system before p, they have a greater time-stamp due to their initial edge’s
clock skew or the value of the function f ( ). The total size of these packets is at most
r(φmax + fmax − fmin)Bmax + b − 1 = k0 − 1 bits (since Lp ≥ 1).

Let us now assume as induction hypothesis that the claim holds for 0 ≥ i < dp −1.
Then, from Lemma 2, p will arrive at the output queue of edge ei+1(p) at most
(ki + b)/(εBmin) + Dmax time units after arriving at the output queue of edge ei(p).
During this time at most packets with r((ki + b)/(εBmin) + Dmax)Bmax + b bits
are injected that can block p at any edge. Hence packets with at most (ki − 1) +
r((ki + b)/(εBmin)+Dmax)Bmax + b = ki+1 − 1 bits can block p in any edge ej (p),
j ≥ i + 1. �

Using these definitions of ki and the previous lemma, we can limit the size of the
queues and the amount of time that a packet spends in the network as it was done
in [5]. The proof of the theorem is verbatim to the final part of the corresponding
theorem in [5] and is hence omitted.

Theorem 2 Let G be a network and dmax the length of its longest edge-simple di-
rected path, let A be an (r, b)-adversary with r = 1 − ε < 1 and b ≥ 1, and let Pf

be a policy in SISP. Then the system (G, Pf , A) is stable under the NSCAQT model
with bounded clock skews, no queue ever contains kdmax−1 +Lmax bits, and no packet
spends more than

dmaxb + ∑dmax−1
i=0 ki

εBmin
+ dmaxDmax

units of time in the system.
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Hence the main result of the section.

Corollary 2 Any policy in SISP, and in particular SIS, is universally stable under the
NSCAQT model with bounded clock skew, and hence under the CAQT model.

4.2 Universal Stability of LISP

As defined in Sect. 2, LISP is a family of policies based on the injection time, and
the path and the number of edges already crossed by a packet. A policy Pf in LISP
assigns to each packet p at the queue of its edge ei(p) a priority label PL(p, i) =
TS(p) + f (�(p), i), and gives the highest priority to the packet with the smallest
label.

Now we prove that every policy in LISP is universally stable in the NSCAQT
model when the clock skew is bounded by φmax. We start with the following simple
lemma, which is similar to Lemma 1 in the previous section.

Lemma 4 Let p and q be two packets. If T0(q) > T0(p) + fmax − fmin + φmax, then
q never has higher priority than p in any queue.

Proof Let us assume that p and q meet at the output queue of edge ei(p) = ej (q).
Note that φmax − φe0(q) ≥ 0 and that f (�(q), j) − fmin ≥ 0. Hence,

PL(q, j) = T0(q) − φe0(q) + f (�(q), j)

> T0(p) + fmax − fmin + φmax − φe0(q) + f (�(q), j)

≥ T0(p) + fmax

≥ PL(p, i),

and then PL(q, j) > PL(p, i) for all i and j . �

Let p be a packet in the system and let t denote some real time in [T0(p), Tdp (p)].
We denote by g(t) the real injection time of the oldest packet in the system at time
t . We define Cp = maxt∈[T0(p),Tdp (p)]{t − g(t)}. Notice that Cp represents the age
of the oldest packet in the system while p is present. For convenience we use the
abbreviation K = fmax − fmin + φmax.

In the following lemma we start by bounding the amount of time, Ti+1(p)−Ti(p),
that p takes to move from the queue of ei to the queue of ei+1, which allows us to
bound the time p is in the system.

Lemma 5 The time packet p is in the system is at most

Tdp (p) − T0(p) ≤ (1 − εd)

(
K + Cp + Dmax

1 − ε

)
.

Proof Observe that the oldest packet in the system when p arrives at the queue of
ei at time Ti(p) was injected at most at time Ti(p) − Cp . Then, from Lemma 4 we
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have that p, and all the packets with higher priority than p in the queue of ei , were
injected during the interval [Ti(p) − Cp,T0(p) + K]. Since the packets injected in
this interval can have at most

(1 − ε)(T0(p) + K − Ti(p) + Cp)Bei
+ b

bits, we know that all of them cross ei in at most

(1 − ε)(T0(p) + K − Ti(p) + Cp) + b

Bei

+ Pei

≤ (1 − ε)(T0(p) + K − Ti(p) + Cp) + Dmax

units of time. Then, we have that

Ti+1(p) ≤ Ti(p) + (1 − ε)(T0(p) + K − Ti(p) + Cp) + Dmax

= εTi(p) + (1 − ε)(T0(p) + K + Cp) + Dmax,

and solving the recurrence for Tdp (p) we get

Tdp (p) − T0(p) ≤ (1 − εd)
(
K + Cp + Dmax/(1 − ε)

)
. �

Now, we have bounded the time that a packet spends in the system, but our bound
depends on Cp . To finish the proof we need the following lemma.

Lemma 6 For any packet p we have that

Cp ≤ 1 − εdmax

εdmax

(
K + Dmax

1 − ε

)
= C.

Proof By contradiction, let us assume there are packets that spend in the system
more than C time. Let t be the first time at which a packet has been in the system
more than C time, and let p be one packet that satisfies this. Then Tdp (p) − T0(p) ≥
t − T0(p) > C. Note that before t no packet in the system has age older than C.
Hence, by Lemma 5 with Cp = C we have that

Tdp (p) − T0(p) ≤ (1 − εdp )

(
K + C + Dmax

1 − ε

)

≤ (1 − εdmax)

(
K + C + Dmax

1 − ε

)

= C − εdmaxC + (1 − εdmax)

(
K + Dmax

1 − ε

)

= C,

which is a contradiction. �

Now we can enunciate the final theorem of this section. The proof is by Lemmas 5
and 6, and the definition of K .
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Theorem 3 Let G be a network and dmax the length of its longest edge-simple di-
rected path, let A be an (r, b)-adversary, with r = 1 − ε < 1 and b ≥ 1, and let Pf

be a policy in LISP. Then the system (G, Pf , A) is stable under the NSCAQT model
with bounded clock skew, and no packet spends more than

1 − εdmax

εdmax

(
fmax − fmin + φmax + Dmax

1 − ε

)

units of time in the system.

Corollary 3 Any policy in LISP, and in particular LIS, is universally stable under the
NSCAQT model with bounded clock skew, and hence under the CAQT model.

5 Instability of LIS in the NSCAQT Model with Constant Drifts

In this section we show the instability of LIS in the NSCAQT model with constant
drifts and unbounded skew. To do so, we present a specific network with (only) two
links whose skew is not bounded and whose drift is constant. For this network we
present an injection pattern (an adversary) such that the number of packets in the
network grows forever if LIS is used.

The network G used in this section is presented in Fig. 3, and is similar to the
one shown in Fig. 2 of [3] (sometimes called the “baseball graph”). In this network
we assume that no link has skew, except links f ′

0 and f ′
1 which have no skew at time

t = 0 and have a constant drift of 1. Then, the skew at time t in these links is φf ′
0
(t) =

φf ′
1
(t) = t. Hence, any packet p injected in these two links is assigned a time-stamp

TS(p) = 0,3 and under LIS it will have priority over any other packet in the system
injected after t = 0 in any other link. Additionally, we assume that all packets p have
the same length, Lp = l bits, and that all links e have the same bandwidth Be = l bits
per unit of time, and null propagation delay. With these assumptions, any packet p

takes exactly one unit of time to cross each link.
We now present the adversary A that creates instability in the network G under

LIS. The adversary is described inductively in phases. Initially, at time t0 = 0, A
injects a set S0 of s0 packets at node w1, of which s0/2 have path f1, e0, f0 and s0/2
have path f ′

1, e0, f0. This creates the base case of induction. The induction hypothesis
of phase i, for any i ≥ 0, is the following. Let ti the time at which phase i starts
(which coincides with the time phase i − 1 ends). At time ti , for i even (resp. odd),
there is a set Si of si packets at node w1 (resp. w0), of which si/2 have path f1, e0, f0
(resp. f0, e1, f1) and si/2 have path f ′

1, e0, f0 (resp. f ′
0, e1, f1). We will show that at

time ti+1 there will be more than si packets at node w0 (resp. w1). We present here
only the behavior of even-numbered phases, since odd-numbered phases are perfectly
symmetrical.

Then, the sequence of injections and the system behavior during phase ti , for i

even, is as follows:

3Note that this means that the clock of these links has stopped. We consider this situation for simplicity,
but is it very simple to modify the proof to use a clock that always advances.
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Fig. 3 Network in which LIS is
unstable with unbounded skew

1. At time ti the packets of set Si , initially at node w1, start to be transmitted. The
first one will arrive at node v0 at time ti + 1, and all of the packets of set Si will
arrive at node v0 in si/2 + 1 units of time. Then, they will be sent across link e0

during the time interval [ti + 1, ti + si + 1].4 During this time A injects in node v0

a set X of 	rsi
 packets, whose path is e0, f
′
0, e1, f1. These packets are blocked

by the packets in Si , so that they will be transmitted across e0 in the interval
[ti + si + 1, ti + si + 	rsi
 + 1].

The packets in Si are sent across link f0 in the time interval [ti + 2, ti + si + 2].
During this time A injects at node w0 a set Y of rsi packets which only want
to traverse link f0. These packets are blocked by the packets in Si , and will be
transmitted across f0 during the time interval [ti + si + 2, ti + si + 	rsi
 + 2].

2. During this interval [ti + si + 2, ti + si + 	rsi
 + 2], the packets in X reach w0

to cross link f ′
0. In this interval A injects at node w0 a set Z of 	r	rsi

 packets

whose path is f ′
0. Due to the skew of link f ′

0 and the LIS policy, the packets in Z

have higher priority than those in X. Then, at time ti + si + 	rsi
 + 2 there still
will be a subset X′ of X with 	r	rsi

 packets in the queue of f ′

0.
During the same time interval, A also injects in w0 a set Y ′ of 	r	rsi

 packets

whose path is f0, e1, f1. These packets remain in the queue of f0 at the end of the
interval, since they are blocked by those in Y .

Then, at time ti+1 = ti + si + 	rsi
 + 2 the following packets will be at node w0:

• In the queue of link f0, the 	r	rsi

 packets in set Y ′, whose path is f0, e1, f1.
• In the queue of link f ′

0, the 	r	rsi

 packets in set X′, whose path is f ′
0, e0, f1.

These two sets form the set Si+1 that satisfies the induction hypothesis of phase i +1.
Now, for instability the size si+1 = 2	r	rsi

 of set Si+1 must be a larger than si . For
this condition we can find a rate r and an initial value of s0 such that queues get larger
at each phase, making the system unstable.

4The last packet is sent at time ti + si + 1 and arrives completely at w0 at time ti + si + 2.
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Theorem 4 The system (G,LIS, A) is unstable, where A is the (r, b)-adversary de-
scribed above for the network G of Fig. 3, with s0 ≥ 4, r ≥ √

0.5 + 2/s0, and b ≥ s0l.

Proof From the above, it is enough to show that si+1 = 2	r	rsi

 > si for all i ≥ 0.
Since 	x
 > x −1, we have that 	r	rsi

 > r(rsi −1)−1 > r2si −2. Hence, instabil-
ity follows from r2si − 2 ≥ si/2, which yields a lower bound of r ≥ √

0.5 + 2/si . It
is enough that this holds for i = 0, since then si+1 > si and the bound only decreases.
Hence, s0 ≥ 4 to allow r ≤ 1. The bound on b follows trivially. �

Corollary 4 LIS is not universally stable in the NSCAQT model with constant drifts
and unbounded skew.

6 Universal Stability of LIQ

In previous sections we have shown how several policies are universally stable in
the NSCAQT models with constant and bounded clock skews, respectively. Unfortu-
nately, the bounds on end-to-end packet latencies we derived were dependent on the
maximum clock skew that can occur in the system. This means that in a system with
high maximum skew, the latencies can be very high. It is easy to construct examples
for policies like SIS and LIS in which this can be observed.

In this section we study a new policy named LIQ, which gives the highest priority
to the packet that has been waiting in output queues for the longest time. We prove
that LIQ is universally stable in the NSCAQT model with bounded clock skews.
The bad news is that in this case the end-to-end latency bound we obtain depends
also on the maximum skew. The good news is that for the NSCAQT model with
constant clock skews LIQ is universally stable, and the bound does not depend on the
maximum skew, and it is similar to that obtained with LIS in a synchronized system.

As in previous sections, we assume that φe(t) ≥ 0 for all e and t . Then,
we define φmin(e) = mint {φe(t)} and φmax(e) = maxt {φe(t)}. Finally, let �φ =
maxe{φmax(e) − φmin(e)}. Observe that in the model of constant skews, �φ = 0.

Let Wi,t (p) be the amount of real time which packet p has waited in output queues
when at time t it is at the queue of edge ei(p). We have that

t = T0(p) + Wi,t (p) +
i−1∑
k=0

(
Lp

Bek(p)

+ Pek(p)

)

and, hence,

t − T0(p) − dmaxDmax ≤ Wi,t (p) ≤ t − T0(p). (2)

Recall that measuring the waiting time of a packet at a queue is done by tak-
ing the local time when the packet arrives and the local time when it leaves (or
the current local time if it is still in the queue). Then the measured time at one
queue can have an error of up to ±�φ. Hence, the measured waiting time of a
packet p that at time t is in queue ei(p), denoted Mi,t (p), is a value in the inter-
val [Wi,t (p) − i�φ,Wi,t (p) + i�φ].
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The proof we have is similar to the proof for the LISP family of policies. We first
prove a lemma analogous to Lemma 4.

Lemma 7 Let p and q be two packets. If T0(q) > T0(p) + dmax(2�φ + Dmax), then
q never has higher priority than p in any queue.

Proof Let us assume that p and q meet at the output queue of edge ei(p) = ej (q) at
time t . We need to show that Mj,t (q) < Mi,t (p) is satisfied for any i, j , and t . The
largest value Mj,t (q) can take is

Mj,t (q) ≤ Wj,t (q) + j�φ ≤ Wj,t (q) + dmax�φ.

Similarly, Mi,t (p) ≥ Wi,t (p)−dmax�φ, and therefore we are left with the problem of
showing that Wj,t (q) < Wi,t (p) − 2dmax�φ. Then, by using (2) and the assumption
of the lemma, we have

Wj,t (q) ≤ t − T0(q)

< t − T0(p) − dmax(2�φ + Dmax)

≤ Wi,t (p) − 2dmax�φ

which completes the proof. �

Now, defining K = dmax(2�φ + Dmax), we have that Lemmas 5 and 6 are also
valid in this case. Then, we can enunciate the following theorem.

Theorem 5 Let G be a network with dmax the length of its longest edge-simple di-
rected path, and let A be an (r, b)-adversary with r = 1 − ε < 1. Then

1. The system (G,LIQ, A) is stable under the NSCAQT model with bounded clock
skews, and no packet spends more than

1 − εdmax

εdmax

(
dmax(2�φ + Dmax) + Dmax

1 − ε

)

units of time in the system.
2. The system (G,LIQ, A) is stable under the NSCAQT model with constant clock

skews, and no packet spends more than

1 − εdmax

εdmax

(
dmaxDmax + Dmax

1 − ε

)

units of time in the system.

Corollary 5 LIQ is universally stable under the NSCAQT model with bounded clock
skews, and hence under the CAQT model.
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7 Simulations

In order to partially evaluate the theoretical results we have developed several sim-
ulation experiments. All the experiments in this article have been carried out using
the J-Sim discrete event simulator [9]. J-Sim has been designed to simulate network
behaviors in a realistic way, including propagation delays, packet processing times,
etc. The J-Sim package has been modified in several ways, mainly to adapt it to our
model. First, the traffic generator has been modified in order to ensure that destina-
tions are uniformly distributed over all nodes in the network. Then, the sink monitor
has also been changed in order to log several parameters that are not stored by J-Sim
by default (e.g., the mean and the variance of the packet delay and the queue size, and
samples of these values chosen at random). Also, the routing algorithm has been re-
placed and some scheduling policies discussed in this paper have been implemented.

The network topology used in all the experiments is an 11 × 11 torus, in which
every node is, at the same time, router, source, and sink of packets. Each node peri-
odically generates new packets, whose destination is chosen randomly and uniformly
among the nodes of the network. The routing is deterministic, so that the traffic is
balanced among all the links. We have adjusted the average load of the network to
99% in the simulations because we are interested on the response of the network with
high load levels. In our experiments all the queues are of unbounded size, links have
no propagation delays, the link bandwidth is set to 100 Kbps and the packet size is
105 bytes. The simulation experiments have been run for 6000 seconds, ignoring the
first 1000 seconds in the analysis of the results.

We assign to local node clocks (all output edge clocks in a node are the same)
different skews following a normal distribution with a mean value of 0 seconds and
a standard deviation of up to 105 milliseconds. Before starting the experiment, each
node randomly chooses a constant skew for its clock from the above distribution.

Figure 4 shows the mean and maximum latencies experienced by packets that
cross 10 links when, as said before, the distribution of clock skews have standard
deviations ranging from 0 to 105 milliseconds. As expected, LIQ is not affected by
clock skews, since it does not consider injection time (which could be affected by
clock skews), but waiting time, which is always correctly computed since all clocks
run at the same speed (there are no drifts). It is also noticeable that the mean and the
maximum latencies of LIQ are very low, which is not the case for the other policies,
especially when clock skews grow. At first sight, it seems a bit paradoxical the fact
that the mean latency with SIS decreases when skews grow. However, this behavior
may be attributed to the fact that increasing skews randomizes the behavior of the
policy. Note that the maximum latency with SIS does not seem to be significantly
affected by the skew variation. LIS suffers from increasing clock skews, since its
effectiveness relies on the accuracy of clocks. When skews grow, LIS clearly degrades
its performance. Finally, we want to emphasize the great distance between the mean
and the maximum in the case of SIS, and in the case of LIS for large skews.

Figure 5 shows how the number of hops a packet needs to reach its destination
affects the latency. Here we see that LIS when all clocks are synchronized (no skews)
and LIQ give analogous results, and behave quite uniformly on the number of hops.
It is again noticeable that the mean and the maximum are much closer in the cases
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Fig. 4 Latency experienced by packets that cross 10 links with policies LIS, SIS, and LIQ under distrib-
ution of skews with different standard deviations

of LIS with no skews and LIQ, than in the other cases (between one and two orders
of magnitude). Observe that, while with LIS the slope of the curve increases with the
skew, with SIS the slope decreases.

8 Conclusion

We considered the continuous version of the well-known Adversarial Queuing The-
ory (AQT) model as scenario. It was generalized by considering the possibility that
the router clocks in the network are not synchronized. The model was called Non-
Synchronized CAQT (NSCAQT). We have shown that in NSCAQT when, although
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Fig. 5 Latency experienced by packets with policies LIS, SIS, and LIQ under normal distribution of skews
with standard deviations of 0 and 100000

not synchronized, all clocks run at the same speed; all universally stable policies in
CAQT that use the injection time and the remaining path to schedule packets re-
main universally stable. In a second approach, we studied the case in which clock
differences can vary over time, but the maximum difference is bounded. Under this
framework, we introduced two families of policies called LISP and SISP based on the
well-known policies LIS and SIS. We have shown that both LISP and SISP families
are universally stable. The bounds that we showed in these cases depend on the max-
imum difference between clocks. This is a necessary requirement, since we also have
shown that LIS is not universally stable in systems without bounded clock difference.
We introduced a new universally stable policy called Longest In Queues. In the case
when clocks maintain constant differences, the bounds we proved do not depend on
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them. To finish, we have provided simulation results that compare the behavior of
some of these policies in a network with stochastic injection of packets.

We believe that the policy proposed LIQ could be an interesting alternative to
other popular policies. We believe that further study of LIQ is required. In particular,
we would like to know whether it is stable in NSCAQT under unbounded skew but
constant drift. Along these lines, it would be interesting to devise a policy that is
stable in this model.
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