

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Araujo, Lourdes]
On: 10 September 2009
Access details: Access Details: [subscription number 910066698]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Applied Artificial Intelligence
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713191765

STOCHASTIC PARSING AND EVOLUTIONARY ALGORITHMS
Lourdes Araujo a

a Languages and Computing Systems Department, UNED (Universidad Nacional de Educaction a Distancia),
Madrid, Spain

Online Publication Date: 01 April 2009

To cite this Article Araujo, Lourdes(2009)'STOCHASTIC PARSING AND EVOLUTIONARY ALGORITHMS',Applied Artificial
Intelligence,23:4,346 — 372

To link to this Article: DOI: 10.1080/08839510902830650

URL: http://dx.doi.org/10.1080/08839510902830650

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713191765
http://dx.doi.org/10.1080/08839510902830650
http://www.informaworld.com/terms-and-conditions-of-access.pdf

Applied Artificial Intelligence, 23:346–372
Copyright © 2009 Taylor & Francis Group, LLC
ISSN: 0883-9514 print/1087-6545 online
DOI: 10.1080/08839510902830650

STOCHASTIC PARSING AND EVOLUTIONARY ALGORITHMS

Lourdes Araujo
Languages and Computing Systems Department, UNED (Universidad Nacional
de Educaction a Distancia), Madrid, Spain

� This article aims to show the effectiveness of evolutionary algorithms in automatically
parsing sentences of real texts. Parsing methods based on complete search techniques are limited
by the exponential increase of the size of the search space with the size of the grammar and the
length of the sentences to be parsed. Approximated methods, such as evolutionary algorithms,
can provide approximate results, adequate to deal with the indeterminism that ambiguity
introduces in natural language processing. This work investigates different alternatives to
implement an evolutionary bottom-up parser. Different genetic operators have been considered
and evaluated. We focus on statistical parsing models to establish preferences among different
parses. It is not our aim to propose a new statistical model for parsing but a new algorithm
to perform the parsing once the model has been defined. The training data are extracted from
syntactically annotated corpora (treebanks) which provide sets of lexical and syntactic tags as
well as the grammar in which the parsing is based. We have tested the system with two corpora:
Susanne and Penn Treebank, obtaining very encouraging results.

INTRODUCTION

When we listen to a sentence, independently of its meaning, we
know if it is or is not correctly built. The mental representation that
we have of the grammar of the language allows us to decide on the
correctness of the construction, even if we have not listened to it before,
and even if it contains words that we do not know. The grammar is
an example of a combinatorial discrete system (Pinker 1994) in which
a finite number of elements, the words, are combined to create more
extensive structures, which are the sentences with different properties from
those of the elements that compose them. This combinatorial feature
enables the grammar to generate virtually infinite correct constructions
from a finite number of words. Another property of the grammar is that it

Supported by projects TIN2007-68083-C02-01 and TIN2007-67581-C02-01.
Address correspondence to Lourdes Araujo, UNED, Dpto. Lenguajes y Sistemas Informáticos,

c/Juan del Rosal 16, Madrid 28040, Spain. E-mail: lurdes@lsi.uned.es

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

Stochastic Parsing and Evolutionary Algorithms 347

is autonomous with respect to other cognitive capacities. The grammar
establishes the form in which the words should be combined to express
meanings, and that form is independent of the meanings themselves.
Because of this, we are commonly able to understand the meaning of
sentences that do not exactly match the rules of the grammar. Similarly,
we can recognize meaningless sentences as grammatical.

From these considerations it makes sense to regard parsing as an
autonomous search process for grammatical structures in a combinatorial
discrete space. Classical parsing methods are based on complete search
techniques to find the different interpretations of a sentence. On the
one hand, human parsing does not seem to perform a complete
search but some kind of heuristic process, among other things, because
parsing begins even before the sentence is complete. This suggests
exploring alternative search methods where a degree of uncertainty is
allowed to achieve tractability and robustness. Evolutionary algorithms
are among these kinds of techniques. On the other hand, exhaustive
search techniques can overwhelm the system capabilities when applied to
extensive grammars like the ones automatically obtained from corpora.

Evolutionary algorithms (EAs) are not guaranteed to reach the
optimum solution but a reasonably good approximation, according to the
resources assigned (time and memory). Moreover, the tasks involved in
natural language processing, and parsing in particular, are a special case
due to ambiguity, which in general makes it difficult to determine what
is the best solution. Even if we consider some techniques to resolve the
ambiguous cases, they do not provide a general solution. For example,
if we focus on probabilistic techniques to solve ambiguity, we must take
into account that the most probable parse is not always the correct one.
These reasons make approximate techniques very appropriate for Natural
Language Processing (NLP).

This work investigates the application of evolutionary algorithms to
parsing. Evolutionary algorithms imitate nature in deciding the way the
system is going to change (to evolve), i.e., they are based on the
production of offsprings and on natural selection or survival of the fittest
to the environment. In an evolutionary algorithm, the best candidates
at a given time are favored, but the remainder also has chances of
surviving (although less). This is important because if the circumstances
(the environment) change, some individuals which were little adapted
can pass to be the fittest in the new environment. It is of course true
that nature spends millions of years to carry out those changes, while an
evolutionary algorithm is expected to provide an answer in a much shorter
time. Evolutionary algorithms include mechanisms to explore the search
space without carrying out an exhaustive exploration, and at the same time
to focus the search in a specific direction (they do not carry out a random
blind search), which can vary along the evolution.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

348 L. Araujo

Evolutionary algorithms have already been applied to some issues of
natural language processing (Kool 1999), such as query translation (Davis
and Dunning 1996), inference of context-free grammars (Wyard 1991;
Smith and Witten 1995; Losee 1996; Keller and Lutz 1997), phonological
parsing (Belz 1998), morphological analysis (Kazakov 1997; Kazakov and
Manandhar 2001), part-of-speech (POS) tagging (Araujo 2002b), semantic
interpretation (Rose 1999) and dialogue (Nettleton and Garigliano 1994).

In this article we explore different alternatives for implementing an
evolutionary bottom-up parser. Individuals representation, which should
facilitate its evaluation and the application of the genetic operators, is
highly determined by the kind of parsing. Previous experiments (Araujo
2002a, 2004b) have shown the convenience of working with a bottom-up
parser, which works with a population of partial parses (Araujo 2004a),
which is the alternative explored in this work. Another consideration is
that in natural language not all the constructions are equally frequent.
Thus we can bias towards the most probable constructions, although it is
important to keep in mind that not always the most probable construction
is the most appropriate one. Applying evolutionary algorithms to natural
language processing, we can assimilate the most adapted constructions
with the most probable ones, so that the most probable parses are
favored with a higher probability, although permitting a certain degree
of survival to others, which can eventually be part of a better solution.
Apart from guiding the search, statistical parsing provides a way of dealing
with disambiguation (Charniak 1993). Although the first research in
probabilistic context free grammar (PCFGs) suggested that they were
poor models for language, later works (Charniak 1996, 1997) shown that
they can produce useful results on parsing. More recent works on best-
first strategies have achieved further and further improvements on the
performance. Caraballo and Charniak (1998) provide a detailed study
of different figures of merit (FOM) which can be used to compare the
probability of the constituents of a parse. They proposed a particular
FOM, which outperformed the others in their experiments. In this
FOM, which considers contextual information, a constituent probability is
estimated according to a simple model of the context on both sides of the
constituent, and uses a trigram model for the estimation of the probability
of the sequence of tags, which is part of the estimation.

The work by Charniak, Goldwater, and Johnson (1998) uses the
FOM proposed by Caraballo and Charniak (1998). They present a parser
that also ranks incomplete constituents, or edges, along with complete
constituents. This change leads to an important improvement in the
performance, with a small reduction of the accuracy. This parser is
implemented by transforming the grammar in a binary one, in which every
rule is unary or binary. Blaheta and Charniak (1999) achieve a further
improvement of the performance, with very little decrease in the accuracy.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

Stochastic Parsing and Evolutionary Algorithms 349

This improvement is based on the observation that parsers based on FOMs
tend to spend too much time in one part of the sentence, finding multiple
parses for the same substring, while other parts of the sentence are often
ignored in the meantime.

There have also been other works on parsing that focus on other
kinds of grammars or additional information. Charniak (1997) refines
the statistical model for CFG by using the notion of lexical head of
a constituent. He also finds in the experiments reported in this work
that statistics on individual words outperform statistics on word classes.
Collins (1997) presents a generative model of lexicalized CFG for statistical
parsing. This model includes the treatment of subcategorization and wh-
movement. Charniak and Carroll (1994) propose an approximation to
a context-sensitive model, in which the probability that a nonterminal
expands using a particular grammar rule depends on its parent. Klein
and Manning (2003a) present an extension of the A∗ search algorithm
to tabular PCFG parsing. This method guarantees to find the most likely
parse, not just an approximation. Collins (1999) provides a detailed review
of different works on the topic.

There also exists a number of available parsers, some of which have
been developed on the basis of some of the above-mentioned statistical
models. The CMU link parser (Sleator and Temperley 1993) uses link
grammars for parsing, which assign to a sentence a structure very different
from the one assigned by a PCFG. The Stanford parser (Klein and
Manning 2003b) used unlexicalized PCFG, reaching a performance close
to that of the lexicalized model by using some extra linguistic annotations.
The parser by Collins (1996) uses lexical information by modeling head-
modifier relations between pairs of words. The Bikel parser (2004) is
also based on a lexicalized statistical model, which tries to reduce the
complexity of Collins’ parsing model. The parser by Charniak (2000) is
based on a maximum-entropy model. We have used some of them in the
evaluation of our system.

It is not the purpose of this work to propose a new statistical model for
parsing. What we propose instead is a new parsing algorithm that can be
used in place of a best first chart parser.1 Any statistical model to assign
FOMs to the constituents of the parsing process, complete or incomplete,
can also be used in the evolutionary parser. The FOM, which a best first
chart parser uses to compare the probability of the constituents, is used in
the evolutionary parser as the “fitness” which guides the selection process
during the evolution. Because of this, we have adopted a simple statistical
model, which simplifies the implementation. What we want to compare
in this work are the results, both in efficiency and accuracy, obtained
with a chart parser and the evolutionary one. The training data used
are extracted from corpora syntactically annotated, or treebanks, which
provide the sets of lexical and syntactic tags as well as the grammar in

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

350 L. Araujo

which the parsing is based. We have tested the system on two corpora:
Susanne and Penn Treebank.

EVOLUTIONARY ALGORITHMS: MAIN ELEMENTS

Nowadays, evolutionary algorithms have been shown to be practical
search and optimization methods, applied in diverse areas, such
as planning or machine-learning (Michalewicz 1994). Evolutionary
algorithms mimic the principles of natural evolution: heredity and
survival of the fittest individuals. Different evolutionary programs can
be formulated for a particular problem. Such programs may differ in
many ways, depending on the representation of individuals, on the
genetic operators for transforming the individuals, on the methods for
creating the initial population, on the parameters, etc. Genetic algorithms,
introduced by Holland (1975) were originally proposed as a general
model of adaptive processes, but by far, their largest application is in the
domain of optimization. Evolutionary programming, introduced by Fogel
(1962), was originally offered as an attempt to create artificial intelligence.
The approach was to evolve finite state machines (FSMs) to predict events
on the basis of former observation. Evolution strategies, as developed by
Rechenberg (1973) and Schwefel (1975), were initially designed with the
goal of solving difficult discrete and continuous parameter optimization
problems. Another interesting approach, called genetic programming, was
proposed by Koza (1992). In this case, instead of building an evolutionary
algorithm to solve a problem, the algorithm searches the space of possible
programs (in a particular language) for the best one. The space of
programs can be regarded as a space of rooted trees, i.e., structures
without a predefined size. The evaluation of an individual is based on its
ability to solve a selected set of test cases.

Nevertheless, the different kinds of EAs share a common structure,
shown in Figure 1. Systems based on evolutionary algorithms maintain a
population P of potential solutions, and are provided with some selection
process (individuals_selection) based on the ability of the individual to solve
the problem, which is called its fitness F (evaluation). The population is
renewed (new_generation) by replacing individuals with those obtained by
applying “genetic” operators to selected individuals. The usual “genetic”
operators are crossover and mutation. Crossover obtains new individuals by
mixing, in some problem-dependent way, two individuals, called parents.
Mutation creates a new individual by performing some kind of change
on an individual. The production of new generations continues until
resources are exhausted (termination_condition) or until some individual in
the population is fit enough (required_fitness).

The approach adopted herein is close to genetic programming since
we work with variable size trees. However, in our case the evaluation is

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

Stochastic Parsing and Evolutionary Algorithms 351

FIGURE 1 Structure of an evolutionary algorithm.

based on the ability to solve a particular case, i.e., parsing a particular
sentence, as it is usual in genetic algorithms.

EVOLUTIONARY PARSER DESIGN: TOP-DOWN OR BOTTOM-UP

Parsing a sentence can be sought as a procedure which searches for
different ways of combining grammatical rules to find a combination that
could be the structure of the sentence. A top-down parser starts with
the initial symbol of the grammar, S , and searches for rules to rewrite
nonterminal symbols (rules having this symbol at the left-hand-side) until
achieving a sequence of terminal symbols which matches the lexical classes
of the words in the input sentence. A bottom-up parser starts with the
sequence of lexical classes of the words, and its basic operation is to match
a sequence of symbols to the right-hand-side of a rule. Thus, this parser can
be implemented simply as a search procedure for this matching process.

Though we can define different representations for the individuals,
they must always represent in some way potential solutions, in our case,
parse trees. Furthermore, the selected representation must facilitate the
evaluation of the individuals, in this case, its ability to parsing the sentence
considered. Because of this, it is reasonable that a top-down parser works
with complete parses of the sentence, in order to be able to evaluate
the distribution of the sentence words among the grammar rules. On the
other hand, the intermediate constructions of a bottom-up parser can be
evaluated, because they are naturally associated with a segment of the
sentence.

Another important issue in designing a chromosome representation of
solutions to a problem is the implementation of constraints on solutions.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

352 L. Araujo

There are two main techniques to handle this question. One way is to
generate potential solutions without considering the constraints, and then
to penalize them to reduce their probability of survival. Another way
to handle constraints consists of adopting special representations that
guarantee the generation of only feasible (valid) solutions, and also in
defining genetic operators that preserve the feasibility of the solutions.
Parsing can be formulated as the search in the set of trees constructed
over the grammar alphabet (terminals, P , and nonterminals, N , symbols)
of those that satisfy the constraints of the grammar rules. Thus, we can
consider any of the two mentioned alternatives to handle this constraint
problem.

The first alternative has been adopted in the top-down parser (Araujo
2002a). Since it works with complete parses, if we enforce individuals to
perfectly match the grammar rules, there would be no space for diversity
and evolution under natural selection in most cases (only in the presence
of ambiguity). Because of this, in this case, the parse trees are randomly
generated, only with some minor constraints. This leads to parse trees that
can be inconsistent with the grammar, being the fitness function in charge
of penalizing them. However, the search space to be explored with this
approach is too large. The system was tested on a set of simple sentences,
but the size of the population required to parse real sentences with real
grammars, as those extracted from a linguistic corpus, was too large for the
system to work properly.

On the other hand, the bottom-up parser proposed in this article works
with partial parses (Araujo 2004a) corresponding to different segments of
the sentence. It leaves space for diversity, not only because of the possibility
of applying different grammar rules to parse the same segment of the
sentence, but also because the sentence can be partitioned in different
ways. Accordingly, in this case, the parse (sub)trees are generated in such
a way that they are always coherent with the grammar.

BOTTOM-UP EVOLUTIONARY PARSER

This section is devoted to a probabilistic bottom-up parser which works
with a population of partial parses, i.e., parses of sentence segments.
Only valid parse trees are allowed, and thus, the measure of the quality
of the individuals does not require an inclusion of any contribution
accounting for the feasibility. Because individuals are partial parses, the
fitness can measure how far they are from completing the whole parse
of the sentence, and also their probabilities, if we consider probabilistic
grammars. We obtain the grammar from a treebank, i.e., a large collection
of hand-processed texts in which the grammatical structure has already
been marked.

Let us now consider each element of the algorithm separately.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

Stochastic Parsing and Evolutionary Algorithms 353

Chromosome Representation

Individuals in this system are parses of segments of the sentence, that
is, they are trees obtained by applying the CFG (possibly probabilistic)
to a sequence of words of the sentence. Each individual is assigned a
syntactic category: the left-hand-side of the top-level rule of the parse. The
probability of this rule is also registered. The first word of the sequence
parsed by the tree, the number of words of that sequence, and the
number of nodes of the tree are also registered. Each tree is composed of a
number of subtrees, each of them corresponding to the required syntactic
category of the right-hand-side of the rule. Figure 2 shows some individuals
for the sentence The new promotion manager has been employed by the company
since January +, 1946 +, as a commercial artist in the advertising department +.,
used as a running example, which has been extracted from the Susanne
corpus. We can see that there are individuals composed of a single word,
such as 1, while others, such as 3, are a parse tree obtained by applying
different grammar rules. For the former, the category is the chosen lexical
category of the word (a word can belong to more than one lexical class),
e.g., the category of Individual 1 is AT1. For the latter, the category is the
left-hand-side of the top-level rule, e.g., the category of Individual 3 is Ns.

Initial Population
Because parses are built in a bottom-up manner, the initial population

is composed of individuals that are leave trees formed only by a lexical
category of the word, such as individual 1 of Figure 2. The possible lexical
tags of each word are obtained, along with their frequencies, from a
dictionary. The system generates a different individual for each lexical
category of the word. In order to improve the performance, the initial
population also includes individuals obtained by applying a grammar rule
provided that all of the categories of the right-hand-side of the rule are
lexical. Individual 2 of Figure 2 is one such example.

FIGURE 2 Examples of individuals for the sentence The new promotion manager has been employed by
the company since January +, 1946 +, as a commercial artist in the advertising department +.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

354 L. Araujo

Termination Condition
Though the proposed system can be useful in performing partial

parsings, since the evolutionary algorithm works with these types of parses,
the results we present here correspond to the parsing of the whole
sentence. The evolutionary process continues until a maximum number of
generations have passed or until the convergence criterion is reached. This
criterion requires reaching a complete parse of the sentence which does
not change during a specific number of generations.

Genetic Operators

Chromosomes in the population of subsequent generations, which did
not appear in the previous one, are created by means of different genetic
operators: crossover, mutation, and cut. The crossover operator combines a
parse with other parses present in the population to satisfy a grammar rule.
We have investigated different approaches for this operator. The mutation
operator changes a subtree of an individual by another one which parses
the same sequence of words with a grammar rule of the same type. The
cut operator creates a new parse by randomly selecting a subtree from an
individual of the population. The rates of application of these operators
performed at each step are input parameters. The efficiency of parsing is
very sensitive to them.

At each generation, genetic operators produce new individuals which
are added to the previous population that in this way are enlarged. The
selection process is in charge of reducing the population size down to the
size specified as an input parameter. Selection is performed with respect
to the relative fitness of the individuals, but it also takes into account
other factors to ensure the presence in the population of parses containing
words that are needed in later generations. Elitism2 has also been included
to accelerate the convergence of the process.

Crossover
The crossover operator produces a new individual by combining an

individual selected from the population with an arbitrary number of other
ones. Notice that the crossover in this case does not necessarily occur in
pairs. The individuals to be crossed are randomly selected. This selection
does not consider the fitness of the individuals because some grammar
rules may require, to be completed, individuals of some particular syntactic
category for which there are no representatives with higher fitness.

Crossover begins by selecting an individual from the population to
be combined with others. The next step is selecting among the grammar
rules those whose right-hand-side begin with the syntactic category X of
the selected individual. Then, for each category of the right-hand-side of

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

Stochastic Parsing and Evolutionary Algorithms 355

the rule after the first one, the population is searched for an individual
whose syntactic category matches the required one, and whose sequence
of words is the continuation of the words of the previous subtree. Finally, a
new individual is created, whose syntactic category is the one of the chosen
rule and is composed of the subtrees of the selected individuals. The new
individual is added to the population.

With this scheme, the crossover of one individual may produce no
descendant at all, or may produce more than one descendant. In this latter
case, all descendants are added to the population. The process of selection
is in charge of reducing the population down to the specified size.

Crossover increases the mean size of the individuals every generation.
Though this is advantageous because at the end we are interested in
providing as solutions individuals that cover the whole sentence, it may
also generate some problems. If the selection process removes small
individuals which can only be combined in later generations, the parses
of these combinations will never be produced. This situation is prevented
by applying some constraints in the selection process, as well as by
introducing the cut operator.

We have investigated two different schemes for crossover. Conservative
crossover always produces complete parses of a segment of the sentence.
Speculative crossover may produce parses which lack some subtrees.

Conservative Crossover
This operator produces complete parses of a segment of the sentence,

in such a way that if the parse cannot be completed, the offspring being
constructed is discarded.

Let us assume that the individual 1 of Figure 2 is selected for crossover.
The syntactic category (label of the root) of this individual is AT1. The
next step requires selecting among the grammar rules those whose right-
hand-side begins with this syntactic category, i.e., AT1. Some examples
from the grammar used in this work are (Ns → AT1 JJ NN1c P), (Ns →
AT1 JJ NN1n P), (Ns → AT1 JJ Tg NN1c P), etc. Let us assume that we
choose the first of these rules. Now, the crossover operator searches in the
population for individuals whose syntactic category matches the remaining
categories at the right-hand-side of the rule, and whose sequence of words
is the continuation of the words of the previous individual (Figure 3).
In the example, we look for an individual of category JJ, another of
category NN1c, and a third one of category P. The sequence of words
of the individual of category JJ must begin with the word commercial, the
one following the words of individual 1. Accordingly, the individual 2
of Figure 3 is a possible candidate (likewise, individuals 3 and 4 are
also chosen for the crossover). This process produces the individual 3 of
Figure 2, whose syntactic category is the left-hand-side of the rule (Ns)

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

356 L. Araujo

FIGURE 3 An example of application of the conservative crossover operator. Individual 1, whose
syntactic category is AT1, is randomly selected for crossover. The rule Ns → AT1 JJ NN1c P
is selected among those rules whose right-hand-side begins with AT1. Finally, the population is
searched for individuals corresponding to the remaining syntactic categories of the rule, provided
its sequence of words is appropriate to compose a segment of the sentence.

chosen at the beginning of the process, and which is composed of the
subtrees selected in the previous steps. This new individual is added to the
population. The search in the population for each required individual is
repeated a number of times, and therefore more than one alternative can
be found and thus more than one individual can be produced.

Speculative Crossover
This operator can give rise to incomplete individuals, which lack the

subtree corresponding to some subsequence of words. The operator works
in a different manner depending on whether the selected individual to
be crossed is complete or not. If it is, the operator selects a grammar
rule whose right-hand-side begins with its category, and then searches in
the population for individuals to satisfy the remaining categories of the
right-hand-side of the rule. However, if some of them cannot be found,
the offspring individual is created anyway as an incomplete one. Figure 4
shows an example of this case. The resulting Individual 2 lacks the subtree
corresponding to the syntactic categories Vzfp and P. If, on the contrary,
the selected individual is incomplete, the operator randomly searches in
the population for individuals to complete each missing subtree. Figure 5
shows an example. Individual 1 is selected for crossover, and because it
is incomplete, the population is searched for individuals corresponding

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

Stochastic Parsing and Evolutionary Algorithms 357

FIGURE 4 An example of application of the speculative crossover operator to a complete
individual. Individual 1, which is complete and whose syntactic category is Ns, is randomly selected
for crossover. The rule Ns → Ns Vzfp Pb P P is selected among those rules whose right-hand-side
begins with Ns. Finally, the population is searched for individuals corresponding to the remaining
syntactic categories of the rule. Only an appropriate individual of category Pb is found and thus
the operator produces an incomplete individual.

to the absent subtrees, according to the syntactic categories of the rule
and the sequence of words to be parsed. Individual 2 properly matches
the subtree for the absent category Vxfp and it is added to the individual
producing a new one.

Because this crossover can produce parses with subtrees impossible to
be combined with others to complete the parse, a mechanism is required
to eliminate them. With this purpose, we introduce aging of incomplete
individuals. An incomplete individual starts to age as soon as it is created.
Its age is incremented every new generation as long as the individual is not
combined with another. When the age of an individual reaches a threshold
value, given as an input parameter, the individual dies (is discarded).

FIGURE 5 Example of application of the speculative crossover operator to an incomplete
individual. Individual 1, which is incomplete, is selected for crossover and the population is
searched for individuals of category Vzfp, and P, which parse the appropriate sequence of words.
Individual 2 is found in the population and it is inserted in Individual 1.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

358 L. Araujo

Mutation Operator
This operator randomly changes a subtree of an individual by another

one with the same syntactic category than the replaced one. This operator
works in a slightly different way depending on the kind of crossover,
conservative or speculative, that is being used, i.e., depending on whether
it is applied only to complete individuals or to incomplete ones as well.
When applied to complete individuals, mutation substitutes a subtree by
another one provided the new one parses exactly the same sequence
of words and has the same syntactic category as root, but performs the
parsing in a different manner. Figure 6 shows an example for a possible
individual when parsing the sentence from the Susanne corpus The Fulton
County Grand Jury said Friday an investigation of Atlanta +〈apos〉s recent
primary election produced 〈ldquo〉 + no evidence +〈rdquo〉 that any irregularities
took place +. The subtree under the node (Ns) selected for mutation is
substituted by an individual of syntactic category Ns, which parses the same
sequence of words in a different manner.

When applied to incomplete individuals, the new subtree can parse a
sequence of words different from the replaced one provided this sequence
does not overlap the sequences corresponding to other subtrees of the
individual, and it is the continuation of the sequence of the previous
subtree if it is present, and the preceding sequence of the following

FIGURE 6 Example of an application of the mutation operator to a complete individual. Mutation
is applied to Individual 1 and the subtree corresponding to the syntactic category Ns is randomly
selected for mutation. Then, the population is searched for individuals with syntactic category Ns,
which parse the same sequence of words (an investigation of Atlanta’s recent primary election) in a
different manner.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

Stochastic Parsing and Evolutionary Algorithms 359

FIGURE 7 Example of an application of the mutation operator to an incomplete individual. The
subtree under the node of category Po, which parses of Atlanta, selected for mutation is substituted
by Individual 2. It has the category Po and parses a longer segment of sentence of Atlanta 〈apos〉s
recent primary election, since there is no conflict with the remaining subtrees, which are absent.

subtree if it is present too. Figure 7 shows an example of this case. The
subtree corresponding to the category Po is substituted by Individual 2,
which parses a longer segment of sentence, since there is no conflict with
other subtrees.

Cut Operator
This operator produces a new individual out of another one by

cutting off a subtree of its parse tree at random. The new individual
is added to the population. This operator is introduced in order to
recover parses previously produced, which may have disappeared during
the evolution. The rate of application of the cut operator needs to increase
with the length of the individuals. Accordingly, the application of the cut
operator depends on two parameters, per_cut and threshold_cut. Per_cut is
the percentage of application of cut, while threshold_cut is the minimum
number of words of the individual required to allow the application of cut.
It is given as a percentage of the length of the sentence being parsed.

Fitness: Chromosome Evaluation

As the system only constructs individuals that are valid parses of the
sequence of words considered, we do not need to include in the fitness
any measure of feasibility. Because this bottom-up parser works with partial
parses of the sentence, the fitness measure can include some measure

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

360 L. Araujo

indicating how far the partial parse is of parsing the whole sentence. On
the other hand, if we use probabilistic grammars for parsing, the fitness
function can also include some measure of the probability of the parse,
which can be defined in different ways. According to these considerations,
we have adopted different fitness functions which include one or more of
the following criteria (measures (a) and (b) are related to the closeness to
parsing the complete sentence, while measures (c) and (d) are related to
the probability of the parse):

(a) Length of the segment of sentence being parsed by the individual.
This criterion favors the construction of large individuals, what can
quickly lead to complete the parse of the whole sentence. It is an open
question to investigate whether a fast convergence of the algorithm
can produce high quality individuals.

(b) Number of nodes of the parse tree. This criterion can be used to favor
the generation of parses for large segments of the sentence, as the
previous one. However, this criterion also favors deeper parses.

(c) Measure of the probability of the parse computed as the sum of the
logarithm of the probabilities of the grammar rules included in the
parse:

fitness =
∑

si∈T
log prob(si),

where T is the tree to evaluate and the si denote its nodes. For
the lexical category, the probability is the relative frequency of the
chosen tag. This measure can decrease with the size of the parse, thus
penalizing the parsing of long segments of the sentence, which can
hinder the parsing of the whole sentence. It is also an open question
to investigate the convenience of combining this measure with some
other measure related to the length of the parsed segment.

(d) Measure of the probability of the parse computed as the average
probability of the grammar rules used to construct the parse:

fitness =
∑

si∈T prob(si)

nn(T)

where T is the tree to evaluate, the si denotes its nodes, and nn(T) is
the number of nodes of T . This measure does not depend on the size
of the parse.

The next section reports the results of a study carried out to determine
the most appropriate definition of the fitness function.

Selection usually replaces some individuals of the population
(preferably those with lower fitness) by others generated by the genetic

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

Stochastic Parsing and Evolutionary Algorithms 361

operators. However, there are two issues that make selection a bit different
in our case. First at all, our genetic operators include every new individual
in the population, which in this way grows arbitrarily and therefore needs
to be reduced to a suitable size. And secondly, if fitness were the only
criterion to select the individuals to be eliminated, individuals that are
the only ones parsing a particular word of the sentence could disappear,
thus making it impossible to generate a complete parse of the sentence
in later generations. Accordingly, our selection process reduces the size of
the population by erasing individuals according to their fitness, but only
if each of their words is present in at least another individual. Otherwise,
the individual is kept.

EXPERIMENTAL RESULTS

The bottom-up parser, implemented on a PC in C++ language, has
been applied to two sets of sentences extracted from the Susanne corpus
(Sampson 1995) and from the Penn Treebank (Marcus, Santorini, and
Marcinkiewicz 1994), databases of English sentences manually annotated
with syntactic information. The probabilistic grammar for parsing has
also been obtained from the corpora.3 Each grammar rule is assigned a
probability computed as its relative frequency with respect to other rules
with the same left-hand-side.4

In order to evaluate the quality of the obtained parses, we have used
some common measures for parsing evaluation: recall, precision, and
accuracy. They are defined assuming a bracket representation of a parse
tree. Precision is given by the number of brackets in the parse to evaluate
which match those in the correct tree; recall measures how many of the
brackets in the correct tree are in the parse, and accuracy is the percentage
of brackets from the parse that do not cross over the brackets in the correct
parse.

A necessary condition for a parser to produce the correct parse for
a sentence is that the required rules are present in the grammar. The
grammars directly obtained from a corpus are composed of very specific
rules, what lead to a lack of statistic for many grammar rules, in such a way
that many sentences are parsed with rules that do not appear in any other
sentence. Because we are mainly interested in evaluating a parser, this
problem can be circumvented by applying the parser to sentences from
the training corpus. Thus we have tested the parser on sets of sentences
from the training corpus (17 sentences form the Susanne corpus, with
average length of the sentences of 30 words, and 11 sentences form Penn
Treebank, with average length of 25 words). In order to compare this
evolutionary parser with a classic one, we have implemented a classic best-
first chart parsing (BFCP) algorithm. In a chart parser, the chart structure
stores the partial results of the matchings already done. Matches are always

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

362 L. Araujo

attempted from one component, called key. To find rules that match a
string involving the key, the algorithm looks for rules that start with the
key, or for rules that have already been started by early keys and require
the present key either to extend or to complete the rule. The chart
records all components derived from the sentence so far in the parse.
It also maintains the record of rules that have partially matched but are
incomplete. These are called active arcs. The basic operation of a chart
parser consists in combining an active arc with a completed component.
The result is either a new completed component or a new active arc that is
an extension of the original active arc. Completed components are stored
in a list called agenda until being added to the chart. This process is
called arc extension algorithm, of which Figure 8 shows an scheme. To add a
component C into the chart from position p1 to position p2, C is inserted
into the chart between those positions. Then, for any active arc of the
form X → X1, � � � , ◦C ,Xn (where ◦ denotes the key position) from p0 to
p1, a new active arc X → X1, � � � ,C ◦ Xn is added from position p0 to p2.
Finally, for each active arc X → X1, � � � ,Xn ◦ C from position p0 to p1, which
only requires C to be completed, a new component of type X is added to
the agenda from position p0 to p1. Figure 9 shows a scheme of the chart-
parsing algorithm. It consists of a loop repeated until there is no input
left. At each iteration, if the agenda is empty, the lexical categories for the
next word of the sentence are added to the agenda. Then a component
C is selected from the agenda. Let us assume it goes from position p1 to
p2. For each grammar rule of the form X → CX1, � � � ,Xn , a new active arc
X → ◦CX1, � � � ,Xn from p1 to p2 is added from position p1 to p2. Finally, C
is added to the chart by means of the arc extension algorithm.

Best first chart parsing algorithms consider the most likely components
first. The main idea is to implement the agenda as a priority queue—where
the highest rate elements are always first in the queue. Accordingly, the
parser always removes the highest ranked component from the agenda and
adds it to the chart.

Table 1 compares the results of the BFCP and the bottom-up
evolutionary parser (buEP) (average and deviation in 10 runs, where

FIGURE 8 Arc extension algorithm to add a component from position p1 to position p2.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

Stochastic Parsing and Evolutionary Algorithms 363

FIGURE 9 Bottom-up chart parsing algorithm.

fluctuations of different runs are within a 1% interval in the Susanne
corpus and within a 2% interval in the Penn Treebank). We can observe
that in both cases, the buEP improves the results of the BFCP. This is due
to the correct parse of some sentences not being the most probable one.
In this way, the heuristic constituent of evolutionary algorithms shows its
usefulness for parsing. We can observe that the values of precision and
recall are slightly worse than the one for accuracy. This is because the parse
obtained has a structure similar to the one in the corpus, but a different
depth in some subtrees.

We have also studied the impact of the size of the grammar on the
algorithm. Table 2 shows the precision, recall, accuracy, and tagging5

TABLE 1 Comparison of the Bottom-Up Evolutionary Parser (buEP) with a Best First Chart
Parser (BFCP) with Grammars of 800 Rules (Susanne) and 120 Rules (Penn). The Column
Labeled buEP Presents the Average Values of the Results Obtained in 10 Runs, Along with the
Standard Deviation. Tag. acc. Stands for the Accuracy of the Part-of-Speech Tagging Achieved. The
buEP Uses a Population Size of 200 and a Maximum Number of Generations of 500. Crossover
Rate is 40%, Mutation Rate 10%, Cut Rate 20%, and the Threshold Value to Apply Cut is
One-Third of the Length of the Sentence

Susanne Penn

buEP buEP

Measure BFCP Mean SD BFCP Mean SD

Precision 94.52 98.88 0.86 88.66 89.44 1.57
Recall 96.41 98.73 0.61 85.81 87.80 1.74
Accuracy 97.47 99.11 0.99 92.20 94.87 1.07
Tag. acc. 97.30 99.85 0.16 99.22 99.68 0.32

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

364 L. Araujo

TABLE 2 Results Obtained in the Susanne Corpus for Different Sizes of the Grammar with a
Best-First Chart Parser (BFCP) and with the Bottom-Up Evolutionary Parser (buEP), in this Case
Average of 10 Runs, and Deviation in Bracket

225 r. 446 r. 800 r.

BFCP buEP BFCP buEP BFCP buEP

Precision 99.41 99.28 (0.56) 96.41 99.21 (0.41) 94.52 99.88 (0.86)
Recall 97.14 99.28 (0.56) 97.14 99.16 (0.41) 96.41 98.73 (0.61)
Accuracy 94.65 98.32 (1.01) 94.65 98.08 (0.88) 94.65 99.11 (0.99)
Tag. accuracy 99.61 100 (0.0) 99.61 100 (0.0) 97.30 99.85 (0.16)
Time (s.) 1.15 1.28 (0.14) 2.67 3.11 (0.57) 7.75 8.76 (0.71)

results obtained for grammars of different sizes (average and deviation
of 10 runs). We can observe that the results of the evolutionary parser
improve those of a classic chart parser. As expected, results for a particular
corpus get a bit worse when the size of the grammar is enlarged, since
there is a higher degree of indeterminism. The most remarkable point
of those data is that the buEP results are very close to 100% in all three
measures, while the probabilistic chart parser results are far from this
value, again because the correct parse of some sentences is not the most
probable one. It may be surprising that the buEP results improve those
of the BFCP when the fitness measure is the parse probability. However,
we must take into account that in the case of buEP, the composition of
the population is constrained by the input sentence and the crossover
and mutation operators have a high impact on the kind of individuals
generated.

Another result worth noticing is the high accuracy of the part-of-speech
tagging obtained.

Studying the Algorithm Design

Different experiments have been conducted in order to investigate the
most appropriate definition of the fitness function and genetic operators.
Table 3 shows the results for the Penn Treebank obtained with different
fitness measures when using conservative crossover, while Table 4 shows the
results with the Susanne corpus. The first column in these tables indicates
the definition of the fitness function that has been used: (a) for a fitness
based on the length of the parsed segment sentence; (b) for the number
of nodes in the parse tree; (c) for a probabilistic measure defined as the
sum of the logarithm of the probabilities of the grammar rules; (d) for a
probabilistic measure defined as the average probability of the grammar
rules; (c)∗(a) for a function defined as the product of the measures (c)
and (a), and (d)∗(a) for one defined as the product of (d) and (a). The

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

Stochastic Parsing and Evolutionary Algorithms 365

TABLE 3 Results Obtained in the Penn Treebank with Different Definitions of the Fitness
Function (Average and Deviation of 10 Runs). The Population Size is 200 and the Maximum
Number of Generations is 100. Crossover Rate is 40%, Mutation Rate 10%, Cut Rate 20%, and
the Threshold Value to Apply Cut is One-Third of the Length of the Sentence

Fitness measure Tag. acc. Precision Recall Accuracy

(a) 97.96 (0.74) 85.13 (1.13) 76.95 (1.31) 90.18 (1.21)
(b) 97.62 (0.45) 78.93 (0.98) 75.39 (1.02) 88.22 (1.29)
(c) 99.78 (0.32) 91.64 (1.57) 90.80 (1.74) 95.87 (1.07)
(d) 98.76 (0.69) 85.78 (0.94) 84.09 (0.92) 92.10 (1.49)
(c) ∗ (a) 96.55 (1.06) 85.44 (1.21) 78.01 (1.04) 89.79 (0.99)
(d) ∗ (a) 95.43 (1.32) 87.91 (1.01) 80.33 (1.33) 91.12 (1.10)

worse results are those obtained with the definition (b), based on the
number of nodes, because though this measure leads to build parses of
longer segments of sentences, like (a), it also tends to produce larger parse
trees, too deep to be correct. We can observe that in both corpora, the best
measure is (c), the one defined as the logarithm of the probability of the
parse tree, which is a correct definition of probability (see Charniak 1993)
of a parse tree for a probabilistic CFG.6 Accordingly, this has been the
fitness function adopted in the remaining experiments. The combination
of the probabilistic measures with the measure based on the length of the
parsed segment does not improve the results or even spoil them.

We have also studied the most appropriate type of crossover operator,
conservative or speculative. Tables 5 and 6 show the results. Though the
speculative crossover can provide results as good as the conservative one
(see Table 6), the execution time increases significantly with this crossover,
since it allows for a higher indeterminism. Therefore, the conservative
crossover has been adopted.

TABLE 4 Results Obtained in the Susanne Corpus with Different Definitions of the Fitness
Function (Average and Deviation of 10 Runs). The Population Size is 200 and the Maximum
Number of Generations is 40. Crossover Rate is 40%, Mutation Rate 10%, Cut Rate 20%, and the
Threshold Value to Apply Cut is One-Third of the Length of the Sentence

Fitness measure Tag. acc. Precision Recall Accuracy

(a) 97.33 (0.54) 95.89 (0.76) 94.89 (0.76) 96.59 (0.88)
(b) 99.03 (0.41) 95.74 (0.83) 93.37 (0.63) 95.67 (0.84)
(c) 99.85 (0.16) 98.88 (0.86) 98.73 (0.61) 99.11 (0.99)
(d) 99.50 (0.23) 96.47 (0.73) 94.99 (0.64) 94.94 (0.86)
(c) ∗ (a) 99.84 (0.61) 96.48 (0.81) 95.01 (0.63) 96.59 (0.91)
(d) ∗ (a) 99.44 (0.24) 96.32 (0.77) 95.91 (0.71) 95.88 (0.94)

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

366 L. Araujo

TABLE 5 Results Obtained in the Penn Treebank with Different Types of Crossover Operator
(Average and Deviation of 10 Runs). The Parameters for the Execution with Speculative
Crossover are a Population Size of 600 and the Maximum Number of Generations is 500.
Crossover Rate is 40%, Mutation Rate 10%, Cut Rate 20%, and the Threshold Value to Apply Cut
is One-Third of the Length of the Sentence. For the Conservative Crossover the Parameters are
Population Size of 200 and the Maximum Number of Generations is 500. Crossover Rate is 40%,
Mutation Rate 10%, Cut Rate 20%, and the Threshold Value to Apply Cut is Again One-Third of
the Length of the Sentence

Cross. type Tag. acc. Precision Recall Accuracy Ex. time

Speculative 99.45 (0.50) 85.73 (2.54) 81.75 (1.98) 92.16 (1.84) 46.69 (2.16)
Conservative 99.6 (0.32) 89.44 (1.57) 87.80 (1.74) 94.87 (1.07) 4.13 (0.45)

Studying the Evolutionary Parameters

Some experiments have been carried out in order to determine
the most appropriate values for the parameters of the algorithm. The
results presented here (average and deviation of 10 runs) corresponds to
experiments with Penn Treebank, which is more sensitive to the variations
in the parameters. Table 7 shows the results obtained for different sizes
of the population. A population size of 150 is the minimum required to
reach the complete parse of all the sentences with the chosen crossover
rate and the maximum number of generations. With the chosen parameter
setting, enlarging the population to more than 200 individuals worsens the
results.

Other parameters that have been investigated are the rates of
application of the genetic operators. Table 8 shows the results for different
rates of the crossover operator, Table 9 for different rates of mutation,
and Table 10 for different rates of the cut operator. From Table 8 we can
observe that the results improve with the crossover rate until a certain rate

TABLE 6 Results Obtained in the Susanne Corpus with Different Types of Crossover Operator
(Average and Deviation of 10 Runs). The Parameters for the Execution with Speculative
Crossover are a Population Size of 600 and a Maximum Number of Generations of 500. Crossover
Rate is 30%, Mutation Rate 40%, Cut Rate 10%, and the Threshold Value to Apply Cut is
One-Third of the Length of the Sentence. For the Conservative Crossover the Parameters are
Population Size of 200 and a Maximum Number of Generations of 500. Crossover Rate is 40%,
Mutation Rate 10%, Cut Rate 20%, and the Threshold Value to Apply Cut Again One-Third of
the Length of the Sentence

Cross. type Tag. acc. Precision Recall Accuracy Ex. time

Speculative 99.53 (0.36) 98.92 (0.76) 98.20 (1.30) 98.21 (1.05) 28.11 (5.23)
Conservative 99.85 (0.16) 98.88 (0.86) 98.73 (0.61) 99.11 (0.99) 8.76 (0.71)

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

Stochastic Parsing and Evolutionary Algorithms 367

TABLE 7 Results Obtained (Average and Deviation) in the Penn Treebank for Different
Population Sizes with a Maximum Number of Generations of 500. Crossover Rate is 40%,
Mutation Rate 10%, Cut Rate 20%, and the Threshold Value to Apply Cut is One-Third of the
Length of the Sentence

Population size Tag. acc. Precision Recall Accuracy

150 99.68 (0.32) 87.12 (1.49) 85.17 (1.25) 93.16 (1.59)
200 99.68 (0.32) 89.44 (1.57) 87.80 (1.74) 94.87 (1.07)
250 99.16 (0.45) 85.61 (1.66) 84.47 (1.63) 92.34 (1.12)
300 98.96 (0.19) 86.09 (1.45) 84.97 (1.67) 91.06 (1.23)
400 98.14 (0.44) 84.26 (1.78) 83.66 (1.45) 89.96 (1.30)

(40%). Enlarging the crossover rate beyond this value slightly spoils the
results. Results also improve with the rate of mutation and the cut operator
until a threshold value, as Tables 9 and 10 show. Table 9 indicates that the
mutation rate does not affect the results too much, since the applicability
of the mutation, which is restricted to complete individuals (the only ones
produced with the conservative crossover), is severely limited: it can only
exchange a subtree by another one with the same syntactic category, which
parses exactly the same sequence of words, and this is not always possible.
We can observe that the crossover rate has a higher impact on the results
than the ones of mutation or cut. The crossover operator is the most
important one in our algorithm, because of the kind of individuals it deals
with. Crossover is responsible for extending the parsed segments until
completing the parse of the whole sentence and thus, its rate of application
has the highest impact on the results.

Another parameter that has been investigated is the threshold value of
the length of the sequence of words parsed by an individual to allow the
application of the cut operator. Table 11 shows the results. The best results
are obtained when cut is only applied to individuals that parse a sequence
of words longer than one-third of the sentence length.

TABLE 8 Results Obtained (Average and Deviation) in the Penn Treebank for Different Rates of
Crossover, with a Mutation Rate of 10%, a Cut Rate of 20%, a Population Size of 200 Individuals,
a Maximum Number of Generations of 500, and a Threshold Value to Apply Cut of One-Third
of the Length of the Sentence

Crossover rate Tag. acc. Precision Recall Accuracy

10 98.17 (0.51) 85.41 (1.32) 83.22 (1.44) 91.83 (2.54)
20 98.54 (0.35) 87.83 (1.45) 86.25 (1.76) 91.91 (1.33)
30 99.23 (0.43) 89.13 (1.34) 86.81 (1.62) 93.97 (1.67)
40 99.68 (0.32) 89.44 (1.57) 87.80 (1.74) 94.87 (1.07)
50 99.16 (0.34) 86.26 (1.54) 84.14 (1.51) 92.18 (1.59)
60 99.12 (0.45) 85.96 (1.71) 83.08 (1.70) 92.32 (1.54)

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

368 L. Araujo

TABLE 9 Results Obtained (Average and Deviation) in the Penn Treebank for Different Rates of
Mutation, with a Crossover Rate of 40%, a Cut Rate of 20%, a Population Size of 200 Individuals,
a Maximum Number of Generations of 500, and a Threshold Value to Apply Cut of One-Third
of the Length of the Sentence

Mut. rate Tag. acc. Precision Recall Accuracy

0 99.52 (0.31) 86.79 (1.34) 82.88 (1.89) 92.96 (1.31)
5 99.74 (0.25) 86.25 (1.39) 83.46 (1.45) 93.92 (0.93)

10 99.68 (0.32) 89.44 (1.57) 87.80 (1.74) 94.87 (1.07)
20 99.68 (0.32) 87.49 (1.45) 83.34 (1.89) 92.67 (1.32)
30 99.35 (0.42) 86.92 (1.63) 83.04 (1.91) 92.03 (1.13)

TABLE 10 Results Obtained (Average and Deviation) in the Penn Treebank for Different Rates
of Cut, with a Crossover Rate of 40%, a Mutation Rate of 10%, a Population Size of 200
Individuals, a Maximum Number of Generations of 500, and a Threshold Value to Apply Cut of
One-Third of the Length of the Sentence

Cut rate Tag. acc. Precision Recall Accuracy

0 99.45 (0.42) 83.59 (1.89) 81.67 (2.13) 90.89 (1.53)
5 99.32 (0.24) 84.62 (1.78) 81.61 (2.04) 90.92 (1.34)

10 99.65 (0.38) 87.91 (1.65) 85.03 (1.89) 91.67 (1.39)
20 99.68 (0.32) 89.44 (1.57) 87.80 (1.74) 94.87 (1.07)
30 97.17 (0.44) 87.21 (1.69) 86.06 (1.81) 92.11 (1.18)

TABLE 11 Results Obtained (Average and Deviation) in the Penn Treebank for Different
Threshold Values of the Length of the Sequence of Words Required to Apply Cut, with a Cut
Rate of 20%, a Population Size of 200 Individuals, a Maximum Number of Generations of 500, a
Crossover Rate of 40%, and a Mutation Rate of 10%

Threshold (cut) Tag. acc. Precision Recall Accuracy

|s| 98.89 (0.35) 84.63 (2.36) 81.10 (2.00) 90.27 (1.23)
|s|/1.5 99.12 (0.22) 84.91 (1.81) 82.46 (2.21) 90.07 (1.15)
|s|/2.0 99.36 (0.38) 84.45 (2.05) 82.99 (1.74) 93.71 (1.36)
|s|/2.5 99.36 (0.38) 87.05 (1.78) 85.68 (1.85) 94.22 (1.10)
|s|/3.0 99.68 (0.32) 89.44 (1.57) 87.80 (1.74) 94.87 (1.07)
|s|/3.5 99.85 (0.38) 85.97 (1.78) 84.74 (1.62) 92.32 (1.23)
|s|/4.0 99.10 (0.49) 85.34 (1.67) 84.91 (1.83) 90.18 (1.15)

|s| length of the sentence.

Comparison with Other Parsers

This article presents a search method valid for different tagging
models, and thus our goal is not to compete with other models. However,
in order to give an idea of the quality of the particular model that we have
used, as well as the evolutionary search method, we present a comparison
with other parsers. Among the different available parsers we have chosen

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

Stochastic Parsing and Evolutionary Algorithms 369

TABLE 12 Comparison of Results Obtained with the Bikel Parser, Charniak Parser, and the
Parser Presented Here (Average and Deviation of 10 Runs), Applied to the Same Set of
Sentences, Extracted from Penn Treebank, and Trained with the Same Set of Files from this
Corpus

Threshold (cut) Tag. acc. Precision Recall Accuracy

Bikel parser 96.89 81.46 80.70 97.90
Charniak parser 94.96 82.56 82.58 98.98
Evolutionary parser 99.68 (0.12) 89.44 (1.32) 87.80 (1.67) 94.87 (1.13)

Bikel’s (2004) and Charniak’s (2000) parsers because they can be trained
with a particular set of parsed files, and thus we can use the same set used
in our system, making the comparison more fair.

Table 12 compares the results of parsing the same set of sentences
extracted from the Brown section of the Penn Treebank, when the
system has been trained with the files from the section cf of this corpus.
Though the underlying statistical model is different in each parser,
we can observe that the results are rather similar; even for some of
the measures considered, the evolutionary parser outperforms the other
parsers. In this way, the evolutionary approach is proven a valid search
technique, which can be applied to any proposed parsing model, avoiding
the design of particular algorithms for the chosen model. Besides, the
methodology developed for evolutionary algorithms, such as very refined
genetic operators, and in particular, parallelization models, can be applied
to the evolutionary parsers, allowing the improvement of different aspects
of the system performance.

CONCLUSIONS

We have performed a detailed study of different alternatives for
designing an evolutionary algorithm for bottom-up parsing. This study
includes the investigation of different definitions of the fitness function
used in the evaluation of the individuals, the use of different genetic
operators, and a search of the most appropriate parameters. The
information required to apply the evolutionary approaches that have been
proposed are the grammar and the lexical categories corresponding to
each word. Because this information is automatically obtained from a
linguistic corpus, the evolutionary parsers are language independent.

The main conclusion of this work is that evolutionary algorithms
provide a valid approach for parsing. They can improve the results of
classic parsers based on exhaustive search techniques. For example, best-
first chart parsers always produce the most probable parses according to
the provided probabilistic grammar. However, the most probable parse

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

370 L. Araujo

is not always the correct one, according to the corpus. An evolutionary
parser however, although biased to select the most probable parses, can
also produce others, thus improving the results of the chart parser. In
fact, the evolutionary parser can be regarded as a kind of chart parser
with a random component. The individuals in the population represent
the completed constituent that the chart parser stores to be combined
according to the grammar rules. The arc extension algorithm, used by a
chart parser to extend a parsed segment of the sentence to a longer one, is
represented by the crossover operator, which combines partial parses. The
most important difference is the way of selecting the rules to be applied.
A best-first parsing algorithm always selects the most likely rule, while
the evolutionary parser can select any rule, though those with a higher
probability have more chances to be selected.

Another conclusion from the experiments is the advantage of working
with partial parses. This allows setting the constraint given by the grammar
rules in the generation of new individuals, so that the algorithm works
only with valid ones. This highly reduces the search space, what has proven
essential for the system to properly work with real text sentences. This
representation of the individuals as partial parses fits well with a bottom-
up parser, which can begin with the partial parses given by the assignment
of lexical tags to the words of the sentence, and then combine them
according to the grammar rules.

Experiments on the fitness function have revealed the usefulness of
using a probabilistic grammar. The best results are obtained with a fitness
function based on the probability of the grammar rules used to build the
parse. Specifically, the most appropriate fitness function is the one defined
as the sum of the logarithm of the probability of the rules.

Concerning the genetic operators, a more conservative crossover
provides best results, particularly on the execution time, than a more
speculative one. The conservative crossover, which produces only complete
individuals where each category of the applied grammar rule has been
satisfied, highly reduces the search space, thus improving the results.

The main limitation of the system is due to the grammars used, which
have been directly extracted from a corpus. These grammars have two
main problems. On the one hand, their rules are very specific, and in many
cases they are only used for parsing a single sentence. When we try to
parse a sentence outside the training text, it is common to require rules
that have not appeared before, thus impeding the parsing. On the other
hand, the large size of such too specific grammars limits the performance
of the system. These problems are not specific to the evolutionary parser,
but of any parser that uses these grammars. Accordingly, we plan to work in
obtaining more appropriate grammars, which allow the evolutionary parser
to be applied to any sentence in the language considered.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

Stochastic Parsing and Evolutionary Algorithms 371

REFERENCES

Araujo, L. 2002a. A parallel evolutionary algorithm for stochastic natural language parsing. In: Proc.
of the Int. Conf. Parallel Problem Solving from Nature (PPSNVII), Lecture Notes in Computer Science
2439, pp. 700–709. Heidelberg, Germany: Springer-Verlag.

Araujo, L. 2002b. Part-of-speech tagging with evolutionary algorithms. In: Proc. of the Int. Conf. on
Intelligent Text Processing and Computational Linguistics (CICLing-2002), Lecture Notes in Computer
Science 2276, pp. 230–239. Heidelberg, Germany: Springer-Verlag.

Araujo, L. 2004a. A probabilistic chart parser implemented with an evolutionary algorithm. In: Proc.
of the Int. Conf. on Intelligent Text Processing and Computational Linguistics (CICLing-2004), Lecture
Notes in Computer Science 2945, pp. 81–92. Heidelberg, Germany: Springer-Verlag.

Araujo, L. 2004b. Symbiosis of evolutionary techniques and statistical natural language processing.
IEEE Transactions on Evolutionary Computation 8(1):14–27.

Belz, A. 1998. Discovering phonotactic finite-state automata by genetic search. In: Proc. of COLING-

Bikel, D. M. 2004. A distributional analysis of a lexicalized statistical parsing model. In: Proc.
of the Conf. on Empirical Methods in Natutal Language Processing, EMNLP 2004, pp. 182–189.
Stroudsburg, USA: Association for Computational Linguistics.

Blaheta, D. and E. Charniak. 1999. Automatic compensation for parser figure-of-merit flaws. In:
Proc. of Annual Conference of the Association for Computational Linguistics, pp. 513–518. Association
for Computational Linguistics.

Caraballo, S. and E. Charniak. 1998. New figures of merit for best-first probabilistic chart parsing.
Computational Linguistics 24(2):275–298.

Charniak, E. 1993. Statistical Language Learning. Boston: MIT Press.
Charniak, E. 1996. Tree-bank grammars. In: Proc. of the Thirteenth National Conference on Artificial

Intelligence, Vol. 2, pp. 1031–1036. Cambridge, USA: AAAI Press/MIT Press.
Charniak, E. 1997. Statistical parsing with a context-free grammar and word statistics. In: Proc. of the

14th National Conference on Artificial Intelligence, pp. 598–603. Cambridge, USA: AAAI Press/MIT
Press.

Charniak, E. 2000. A maximum-entropy-inspired parser. In: Proc. of the conf. on North American
Chapter of the Association for Computational Linguistics, pp. 132–139, San Francisco, CA: Morgan
Kaufmann Publishers.

Charniak, E. and G. Carroll. 1994. Context-sensitive statistics for improved grammatical language
models. In: AAAI, pp. 728–733.

Charniak, E., S. Goldwater, and M. Johnson. 1998. Edge-based best-first chart parsing. In: Proc.
of the 6th Workshop for Very Large Corpora, pp. 127–133. Stroudsburg, USA: Association for
Computational Linguistics.

Collins, M. 1997. Three generative, lexicalised models for statistical parsing. In: Proc. of the Annual
Meeting of the Association for Computational Linguistics, pp. 16–23. Stroudsburg, USA: Association
for Computational Linguistics.

Collins, M. 1999. Head-Driven Statistical Models for Natural Language Parsing. PhD dissertation,
Philadelphia, PA: University of Pennsylvania.

Collins, M. J. 1996. A new statistical parser based on bigram lexical dependencies. In: Proceedings
of the 34th Annual Meeting of the Association for Computational Linguistics, eds. A. Joshi and M.
Palmer, pp. 184–191, San Francisco: Morgan Kaufmann Publishers.

Davis, M. and T. Dunning. 1996. Query translation using evolutionary programming for multilingual
information retrieval II. In: Proc. of the Fifth Annual Conf. on Evolutionary Programming. San
Diego, USA: Evolutionary Programming Society.

Fogel, L. J. 1962. Autonomous automata. Ind. Res. 4:14–19.
Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of

Michigan Press.
Kazakov, D. 1997. Unsupervised learning of naive morphology with genetic algorithms. In: Workshop

Notes of the ECML/MLnet Workshop on Empirical Learning of Natural Language Processing Tasks, pp.
105–112. Prague, Czech Republic.

Kazakov, D. and S. Manandhar. 2001. Unsupervised learning of word segmentation rules with
genetic algorithms and inductive logic programming. Machine Learning 43:121–162.

ACL ’98, pp. 1472–1474. San Francisco, USA: Morgan Kaufmann.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

372 L. Araujo

Keller, B. and R. Lutz. 1997. Evolving stochastic context-free grammars from examples using a
minimum description length principle. In: Workshop on Automata Induction, Grammatical Inference
and Language Acquisition ICML097. Int. Conf. on Machine Learning, Nashville, Tennessee, USA.

Klein, D. and C. Manning. 2003a. A* parsing: Fast exact viterbi parse selection. In: Proceedings
of the Human Language Technology Conference of the North American Chapter of the Association
for Computational Linguistics, HLT-NAACL Feb. 2003. Stroudsburg, USA: Association for
Computational Linguistics.

Klein, D. and C. D. Manning. 2003b. Accurate unlexicalized parsing. In: ACL ’03: Proceedings of the
41st Annual Meeting on Association for Computational Linguistics, pp. 423–430. Stroudsburg, USA:
Association for Computational Linguistics.

Kool, A. 1999. Literature survey. Unpublished manuscript, The Netherlands: University of Antwerp.
Koza, J. R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection.

Cambridge, USA: MIT Press.
Losee, R. M. 1996. Learning syntactic rules and tags with genetic algorithms for information

retrieval and filtering: an empirical basis for grammatical rules. Information Processing &
Management 32:185–197.

Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz. 1994. Building a large annotated corpus of
English: The penn treebank. Computational Linguistics 19:313–330.

Michalewicz, Z. 1994. Genetic Algorithms + Data Structures = Evolution Programs. 2nd ed. Heidelberg,
Germany: Springer-Verlag.

Nettleton, D. J. and R. G. Garigliano. 1994. Evolutionary algorithms for dialogue optimization in the
lolita natural language processor. In: Proc. of the Seminar on Adaptive Computing and Information
Processing, pp. 810–815.

Pinker, S. 1994. The Language Instinct. New York: Harper Collins.
Rechenberg, I. 1973. Evolutionsstrategie (Evolutionary Strategies), Technical Report. Stuttgart,

Germany: Frommann-Holzboog.
Rose, C. P. 1999. A genetic programming approach for robust language interpretation. In: Advances

in Genetic Programming 3, eds. L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline,
pp. 67–88. Cambridge, USA: MIT Press.

Sampson, G. 1995. English for the Computer. Oxford: Clarendon Press.
Schwefel, H. P. 1975. Evolutionary strategies and numerical optimization disertation. Technical

Report, Berlin, Germany: Technische Universität.
Sleator, D. D. and D. Temperley. 1993. Parsing English with a link grammar. In: Third International

Workshop on Parsing Technologies, pp. 277–292.
Smith, T. C. and I. H. Witten. 1995. A genetic algorithm for the induction of natural language

grammars. In: Proc. IJCAI-95 Workshop on New Approaches to Learning Natural Language, pp. 17–
24. Montreal, Quebec, Canada.

Wyard, P. 1991. Context free grammar induction using genetic algorithms. In: Proc. of the 4th Int.
Conf. on Genetic Algorithms, pp. 514–518.

NOTES

1� It uses a data structure called chart to store partial results of matches already done, thus avoiding
to try the same matches again and again, and explores the highest probability constituents first.

2� By elitism, we refer to the technique of retaining in the population the best individuals found
so far.

3� In order to simplify the process, those sentences that make reference to elements outside them
(trace sentences) have not been used to extract the grammar.

4� If we are considering the rule r of the form A → · · · , the probability of r is computed as

P (r) = #r∑
r ′=A→··· #r ′

where #r is the number of occurrences of r .
5� Rate of words that have been assigned the correct P05 tag.
6� The probability of each parse is the product of the probabilities of all the rules used in the

parse tree. The probability of a sentence in a PCFG is the sum of the probabilities of all possible
parses for the sentence. Then, the probabilities of all the sentences generated by the grammar
add up to one.

San Francisco: Morgan Kaufmann,

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
r
a
u
j
o
,

L
o
u
r
d
e
s
]

A
t
:

1
6
:
5
9

1
0

S
e
p
t
e
m
b
e
r

2
0
0
9

