Genetic Programming for Natural Language
Parsing *

Lourdes Araujo

Dpto. Sistemas Informdticos y Programacién.
Universidad Complutense de Madrid. Spain.
lurdes@sip.ucm.es

Abstract. The aim of this paper is to prove the effectiveness of the
genetic programming approach in automatic parsing of sentences of real
texts. Classical parsing methods are based on complete search techniques
to find the different interpretations of a sentence. However, the size of
the search space increases exponentially with the length of the sentence
or text to be parsed and the size of the grammar, so that exhaustive
search methods can fail to reach a solution in a reasonable time. This
paper presents the implementation of a probabilistic bottom-up parser
based on genetic programming which works with a population of partial
parses, i.e. parses of sentence segments. The quality of the individuals
is computed as a measure of its probability, which is obtained from the
probability of the grammar rules and lexical tags involved in the parse.
In the approach adopted herein, the size of the trees generated is limited
by the length of the sentence. In this way, the size of the search space,
determined by the size of the sentence to parse, the number of valid
lexical tags for each words and specially by the size of the grammar, is
also limited.

keywords: Genetic programming, Parsing, Probabilistic Context Free Gram-
mar

1 Introduction

The syntactic structure of a sentence represents the way that words in the sen-
tence are related to each other. This structure includes information on how words
are grouped, about what words modify other words, etc. The syntactic structure
is needed for later processing in very different applications, such as extracting
information from documents, translating documents from one language into an-
other, and also to extract the meaning of the sentence. Accordingly, it would be
very interesting to be able to perform parsing in an automatic manner.

However, nowadays parsing is still a difficult task which often produces in-
complete or ambiguous structures. Because some observations and experiments
[1] suggest that human parsing does not perform a complete search, as tradi-
tional parsers do, it can be worthwhile to investigate other alternative search
methods with heuristic and random components.

* Supported by projects TIC2003-09481-C04 and 07T/0030/2003.

2 L. Araujo

The application of Genetic Programming (GP) [2] to this problem is very
natural, since GP is an evolution-based search method which processes a popu-
lation of hierarchical structures, or trees, which is the most common and clear
representation of a parse. Furthermore, probabilistic grammars provide a way
to define a measure of the performance of a parse as a probability. Context Free
Grammars (CFG)!, which represent sentence structure in terms of what compo-
nents are subparts of other components, are the basis of most syntactic repre-
sentations of language. The structure of the sentence according to one of these
grammars is usually represented as a tree. Probabilistic context free grammars
(PCFGs) [3-6], obtained by supplementing the elements of algebraic grammars
with probabilities?, represent an important part of the statistical methods in
computational linguistics. They have allowed important advances in areas such
as disambiguation and error correction, being the base for many automatic pars-
ing systems. PCFGs for parsing are automatically extracted from a large corpus
[7]-

This paper presents the implementation of a probabilistic bottom-up parser
based on genetic programming which works with a population of partial parses,
i.e. parses of sentence segments. The quality of the individuals is computed as a
measure of its probability, which is obtained from the probability of the grammar
rules and lexical tags involved in the parse. In the approach adopted herein, the
size of the trees generated is limited by the length of the sentence. In this way,
the size of the search space, determined by the size of the sentence to parse,
the number of valid lexical tags for each words and specially by the size of the
grammar, is also limited.

Probabilistic grammar-based genetic programming has been previously pro-
posed [8] to incorporate domain knowledge to the algorithm and also to reduce
the bloat phenomenon, resulting from the growth of non-coding branches or in-
trons in the GP individuals. This approach that has been proved effective in
other problems is particularly suitable for the parsing problem, in which the
domain knowledge is the very grammar of the language. In our case, the ini-
tialization step does not represent a problem because the initial population is
composed only of trees corresponding to grammar rules of the form lezical tag
— word, and is limited by the length of the sentence and the lexical tags (noun,
verb, etc.) of its words. Furthermore, individuals contains no introns, since only
valid parse trees are allowed. The price to pay is the design of more complex
genetic operators which only produce valid parses.

' A CFG = (T, N, S, R) is defined by a set of terminals, T, a set of nonterminals,
N, an initial symbol S € {N}, and a set of rules, {N° — 7’} (1’ is a sequence of
terminals and nonterminals).

2 A PCFG is defined as a CFG along with a set of probabilities on the rules such that

Vi P(N'—pi)=1
J

GP for Natural Language Parsing 3

ATI Ns
A /N
Ind. 1 ATI I NNlc P

a commercial artist
Ns

I
N in /N
T T AT T NNJlc

NPM1 YC MCy YC the | department
January R 1946 s Vg
|
Ind. 2 Ind. 3
" " VVGv
advertising

Fig. 1. Examples of individuals for the sentence The new promotion manager has been
employed by the company since January +, 1946 +, as a commercial artist in the
advertising department +.

Evolutionary Algorithms (EAs) have already been applied to some issues
of natural language processing [9], and to parsing in particular. In [10], parse
trees are randomly generated and combined. The fitness function is in charge of
assigning low probability rates of surviving to those trees which do not match
the grammar rules properly. This system has been tested on a set of simple
sentences, but the size of the population required to parse real sentences with
real grammars, as those extracted from a linguistic corpus, is too large for the
system to work properly.

The rest of the paper is organized as follows: Section 2 describes the GP
parser, including the main elements of the algorithm. Then Section 3 presents
and discusses the experimental setup. The paper ends with some conclusions
and perspectives for future work.

2 The Algorithm

Parsing a sentence can be sought as a procedure that searches for different ways of
combining grammatical rules to find a combination which could be the structure
of the sentence. A bottom-up parser starts with the sequence of lexical classes of
the words and its basic operation is to take a sequence of symbols to match it to
the right-hand side of the rules. We obtain the grammar from a large collection of
hand-processed texts or corpus in which grammatical structure has already been
marked. Apart from the probabilistic grammar and the genetic parameters, the
input data of the algorithm are the sentence to be parsed and the dictionary from
which the lexical tags of the words can be obtained along with their frequencies.
Let us now consider each element of the algorithm.

2.1 Chromosome Representation

An important issue in designing a chromosome representation of solutions to a
problem is the implementation of constraints on solutions. There are two main

4 L. Araujo

techniques to handle this question. One way is to generate potential solutions
without considering the constraints, and then to penalize them to reduce their
probability of survival. Another way to handle constraints consists in adopting
special representations which guarantee the generation of feasible solutions only,
and also in defining genetic operators which preserve the feasibility of the solu-
tions. Parsing can be formulated as the search in the set of trees constructed over
the grammar alphabet (terminals, P, and nonterminals, N, symbols) of those
which satisfies the constraints of the grammar rules. Thus, we can consider any
of the two mentioned alternatives to handled this constraint problem.

The first alternative has been adopted in [10]. Though this method works for
simple sentences, when we consider real sentences and real grammars extracted
from a linguistic corpus, the search space of trees is too large for the GP system
to reach a solution in a reasonable amount of time. Accordingly, the algorithm
presented herein follows the second alternative.

Individuals in our system are parses of segments of the sentence, that is,
they are trees obtained by applying the probabilistic CFG to a sequence of
words of the sentence. Each individual is assigned a syntactic category: the left-
hand side of the top-level rule of the parse. The probability of this rule is also
registered. The first word of the sequence parsed by the tree, the number of
words of that sequence and the number of nodes of the tree are also registered.
Each tree is composed of a number of subtrees, each of them corresponding
to the required syntactic category of the right-hand side of the rule. Figure 1
shows some individuals for the sentence The new promotion manager has been
employed by the company since January +, 1946 +, as a commercial artist in the
advertising department +., used as a running example, which has been extracted
from the Susanne corpus. We can see that there are individuals composed of a
single word, such as I, while others, such as 3, are a parse tree obtained by
applying different grammar rules. For the former, the category is the chosen
lexical category of the word (a word can belong to more than one lexical class);
e.g. the category of 1is AT1. For the latter, the category is the left hand-side of
the top level rule; e.g. the category of 3 is Ns.

Initial Population The first step to parse a sentence is to find the possible
lexical tags of each word. They are obtained, along with their frequencies, from
a dictionary. Because parses are built in a bottom-up manner, the initial pop-
ulation is composed of individuals that are leave trees formed only by a lexical
category of the word. The system generates a different individual for each lexical
category of the word. In order to improve the performance, the initial population
also includes individuals obtained by applying a grammar rule provided that all
the categories of the right-hand side of the rule are lexical. The individual 2 of
Figure 1 is one such example.

2.2 Genetic Operators

Chromosomes in the population of subsequent generations which did not appear
in the previous one are created by means of two genetic operators: crossover

GP for Natural Language Parsing 5

Ns —= ATI 1 NNIlc P
? ? ?
Ns —= ATI 1 NNIlc
1 NNlc P
commercial artist T Ns
nd.2 nd.3 I ot
in
AT Tg NNJlc
the | department
Vg
I
VVGv
advertising
Ind. 4

Fig. 2. Example of application of the crossover operator. Individual 1, whose syntactic
category is AT1, is randomly selected for crossover. The rule Ns — AT1 JJ NNlc P is
selected among those rules whose right-hand side begins with AT1. Finally, the popu-
lation is searched for individuals corresponding to the remaining syntactic categories
of the rule, provided its sequence of words is appropriate to compose a segment of the
sentence.

and cut. The crossover operator combines a parse with other parses present in
the population to satisfy a grammar rule; cut creates a new parse by randomly
selecting a subtree from an individual of the population.

At each generation genetic operators produce new individuals which are
added to the previous population that in this way is enlarged. The selection
process is in charge of reducing the population size down to the size specified as
an input parameter. Selection is performed with respect to the relative fitness of
the individuals, but it also takes into account other factors to ensure the pres-
ence in the population of parses containing words that can be needed in later
generations. Elitism has also been included to accelerate the convergence of the
process. The evolutionary process continues until a maximum number of gener-
ations have passed or until the convergence criterion is reached. This criterion
requires to have reached a complete parse of the sentence which does not change
during a specific number of generations.

Crossover The crossover operator produces a new individual by combining an
individual selected from the population with an arbitrary number of other ones.
Notice that the crossover in this case does not necessarily occurs in pairs. The
individuals to be crossed are randomly selected. This selection does not consider

6 L. Araujo

the fitness of the individuals because some grammar rules may require, to be
completed, individuals of some particular syntactic category for which there are
no representatives with higher fitness.

Let us assume that the individual 1 of Figure 1 is selected. The syntactic
category (label of the root) of this individual is AT1. The next step requires
selecting among the grammar rules those whose right-hand side begins with this
syntactic category, i.e AT1. Some examples from the grammar used in this work
are (Ns — AT1 JJ NNl1c P), (Ns — AT1 JJ NNi1n P), (Ns — AT1 JJ Tg NNlc
P), etc. Let us assume that we choose the first of these rules. Now, the crossover
operator searches in the population for individuals whose syntactic category
matches the remaining categories at the right-hand side of the rule, and whose
sequence of words is the continuation of the words of the previous individual
(Figure 2). In the example, we look for an individual of category JJ, another
of category NN1c and a third one of category P. The sequence of words of the
individual of category JJ must begin with the word commercial, the one following
the words of individual 1. Accordingly, the individual 2 of Figure 2 is a possible
candidate (likewise, individuals 8 and 4 are also chosen for the crossover). This
process produces the individual & of Figure 1 whose syntactic category is the
left-hand side of the rule (Ns), and which is composed of the subtrees selected
in the previous steps. This new individual is added to the population.

With this scheme, the crossover of one individual may produce no descen-
dant at all, or may produce more than one descendant. In this latter case all
descendants are added to the population. The process of selection is in charge
of reducing the population down to the specified size.

Crossover increases the mean size of the individuals every generation. Though
this is advantageous because at the end we are interested in providing as solutions
individuals which cover the whole sentence, it may also induce some problems.
If the selection process removes small individuals which can only be combined in
later generations, the parses of these combinations will never be produced. This
situation is prevented by applying some constraints in the selection process, as
well as by introducing the cut operator.

Cut operator This operator produces a new individual out of another one by
cutting off a subtree of its parse tree at random. The new individual is added to
the population.

The rate of application of the cut operator increases with the length of the
individuals. Accordingly, the application of the cut operator depends on two
parameters, per_cut and threshold_cut. Per_cut is the percentage of application
of cut, while threshold_cut is the minimum number of words of the individual
required to allow the application of cut. It is given as a percentage of the length
of the sentence being parsed.

2.3 Fitness: Chromosome Evaluation

Because the system only constructs individuals that are valid parses of the se-
quence of words considered, we do not need to include in the fitness any measure

GP for Natural Language Parsing 7

of feasibility. Thus, the fitness function is basically a measure of the probability
of the parse. It is computed as the average probability of the grammar rules used

to construct the parse:
> prob(s:)

Vs; €T
nn(T)

where T is the tree to evaluate, s; each of its nodes and nn(T') is the number of
nodes. For the lexical category, the probability is the relative frequency of the
chosen tag.

Selection usually replaces some individuals of the population (preferably
those with lower fitness) by others generated by the genetic operators. How-
ever, there are two issues that make selection a bit different in our case. First at
all, our genetic operators include every new individual in the population, which
in this way grows arbitrarily and therefore needs to be reduced to a suitable size.
And secondly, if fitness were the only criterion to select the individuals to be
eliminated, individuals that are the only ones parsing a particular word of the
sentence could disappear, thus making impossible to generate a complete parse
of the sentence in later generations. Accordingly, our selection process reduces
the size of the population by erasing individuals according to their fitness but
always ensuring that each of their words is present in at least another individual.

fitness =

3 Experimental Results

The GP parser, implemented on a PC in C++ language, has been applied to
a set of sentences extracted from the Susanne corpus [11], a database of En-
glish sentences manually annotated with syntactic information. The probabilis-
tic grammar for parsing has also been obtained from the Susanne corpus 2. Each
grammar rule is assigned a probability computed as its relative frequency with
respect other rules with the same left-hand side 4.

In order to evaluate the quality of the obtained parses, we have used the
most common measures for parsing evaluation: recall, precision and accuracy.
They are defined assuming a bracket representation of a parse tree. Precision is
given by the number of brackets in the parse to evaluate which match those in
the correct tree; recall measures how many of the brackets in the correct tree are
in the parse, and accuracy is the percentage of brackets from the parse which do
not cross over the brackets in the correct parse.

A necessary condition for a parser to produce the correct parse for a sentence
is that the required rules are present in the grammar. The Susanne corpus is

3 In order to simplify the process, those sentences which make reference to elements
outside them (#race sentences) have not been used to extract the grammar

4 If we are considering the rule 7 of the form A — - - -, the probability of 7 is computed
as:
F#r
Pr)= =—"—"—
Zr’:A—»--- #T"

where #r is the number of occurrences of r

8 L. Araujo

225 r. 446 r. 795 r.
BFCP|GP|BFCP|GP |BFCP|GP
Precision 99.23 {100{99.23 (99.01{99.23 |97.48
Recall 99.23 {100{99.23 (99.01{99.23 |94.86
Accuracy 98.20 |100/98.20 |99.01|98.20 |97.42
Tag. accuracy|100 |{100{100 100 (100 [99.61

Table 1. Results obtained for different sizes of the grammar with a best-first chart
parser (BFCP) and with the genetic programming algorithm (GP).

annotated with very large sets of lexical and syntactic tags, what leads to a lack
of statistic for many grammar rules, in such a way that many sentences are parsed
with rules which do not appear in any other sentence. Because we are mainly
interested in evaluating a parser, this problem can be circumvented by applying
the parser to sentences from the training corpus. Thus we have tested the parser
on a set of 17 sentences from the training corpus (the average length of the
sentences is 30 words). In order to compare the GP parser with a classic parser,
we have implemented a classic best-first chart parsing (BFCP) algorithm. It uses
a data structure called chart to store partial results of matches already done,
thus avoiding to try the same matches again and again, and explores the high-
probability components first. Table 1 shows the precision, recall, accuracy and
tagging ® results obtained for grammars of different sizes (best results achieved
in ten runs). We can observe that the results of the GP parser improve those
of a classic chart parser for the first grammar. Though these results get a bit
worse when the size of the grammar is enlarged, they can be improved again
by modifying the parameters of the GP algorithm (those employed are suitable
for the grammar of 225 rules). Anyway, the Susanne corpus produces too large
grammars, inappropriate for the GP parser, so we expect to improve the results
by using a more appropriate corpus.

The most remarkable point of the obtained results is that GP is able to reach
a 100% in all three measures, while the probabilistic chart parsing does not reach
this value simply because the correct parse of some sentences is not the most
probable one. In this way the heuristic component of the GP algorithm shows
its usefulness for parsing.

3.1 Studying the GP parameters

Some experiments have been carried out in order to determine the most appro-
priate values for parameters of the GP algorithm. Table 2(a) shows the results
obtained for different sizes of the population. A population size of 100 is the
minimum required to reach the complete parse of all the sentences in 40 gener-
ations. With this number of generations, enlarging the population worsens the
results. Table 2(b) shows that results improve with the number of generations for
a fixed population size. A number of generations smaller than 30 is insufficient
to achieve the complete parse of all sentences with the parameters chosen.

5 rate of words which have been assigned the correct lexical tag

GP for Natural Language Parsing 9

Population Generations
Size Precision |Recall| Accuracy Number Precision|Recall| Accuracy
100 100 100 100 30 98.12 98.12 [95.63
35 99.23 99.23 [98.20

150 98.89 98.89 (97.42
200 08.89 |08.89 |or.42 | [*© 100 1100 1100

- - . 45 100 100 {100

(a) ®)

Table 2. Results obtained for different population sizes with a maximum number of
generations of 40 (a) and for different numbers of generations and a population size
of 100 individuals (b). Crossover rate is 40%, cut rate %30 and the threshold value to
apply cut is |s| / 3, where |s| is the length of the sentence.

Crossover
Rate Precision|Recall| Accuracy| |Cut Rate|Precision|Recall|Accuracy|
25 97.14 97.14 (94.65 5 97.19 97.19 |95.63
30 97.91 97.91 |96.44 10 98.12 98.12 (96.44
40 100 100 (100 20 98.12 98.12 |96.44
50(a) 99.23 99.23 |98.20 30 100 100 {100
50(b) 100 100 (100 (b)

(a)

Table 3. Results obtained for different rates of crossover(a) (with a cut rate of %30)
and for different rates of the cut operator(b) (with a crossover rate of 40%), a population
size of 100 individuals (except the last row, in which it is 120), a maximum number of
generations of 40, and a threshold value to apply cut of |s| / 3.

Other parameters which have been investigated are the rates of application
of the genetic operators. Table 3(a) shows the results for different rates of the
crossover operator and Table 3(b) for different rates of the cut operator. From
Table 3(a) we can observe that the results improve with the crossover rate until
a certain rate (40%). Enlarging the crossover rate beyond this value slightly
spoils the results, because higher crossover rates require larger populations, as
the last row of the table shows. Results also improve with the rate of the cut
operator as Table 3(b) shows. Another parameter which has been investigated is
the threshold value of the length of the sequence of words parsed by an individual
to allow the application of the cut operator to it. The best results are obtained
when cut is only applied to individuals which parse a sequence of words longer
than a third of the sentence length. Notice that for all the parameters studied,
there is at least a value for which precision, recall and accuracy are 100%. This
strongly scores for the GP as compared to classical methods.

4 Conclusions

This paper describes a genetic programming scheme for natural language pars-
ing. This parser uses statistical information to select the most appropriate in-
terpretation of an input sentence. This information is given by a probabilistic

10 L. Araujo

grammar as well as by the frequencies of the lexical categories corresponding to
each word. Because this information is automatically obtained from a linguistic
corpus, the parser is language independent.

The described parser has been applied to a number of sentences, some of
which present some lexical or grammatical ambiguity which can originate multi-
ple parses. In this situation the GP parser has been able to improve the results
of the classical parsers.

The population of the GP parser is composed of partial parses, i.e. parses of
sentence segments, which are always valid. In this approach the size of the trees
generated is limited by the length of the sentence. In this way, the size of the
search space, determined by the size of the sentence to parse, by the number of
valid lexical tags for each words and specially by the size of the grammar, is also
limited. Because the system is devoted to bottom-up parsing, which builds the
parse starting from the words of the sentence, the initial population is composed
only of leave trees, corresponding to the assignment of lexical tags to words. In
this way, the initialization step does no represent a bottleneck. This incremental
approach to build the trees can be applied to other problems in which the size
and composition of the programs to be generated by the GP system are limited.

Future experiments are planned to improve the behaviour of the system in-
cluding the introduction of other genetic operators and the study of other fitness
functions, as well as a possible combination of the parsing problem and the tag-
ging problem of assignment of lexical tags to the words of a text.

References

1. Pinker, S.: The Language Instinct. Harper Collins (1994)
2. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

3. Charniak, E.: Statistical Language Learning. MIT press (1993)

4. Brew, C.: Stochastic hpsg. In: Proc. of the 7th Conf. of the European Chapter of
the Association for Computational Linguistics, Dublin, Ireland, University College
(1995) 83-89

5. Abney, S.: Statistical methods and linguistics. In Klavans, J., Resnik, P., eds.: The
Balancing Act. MIT Press (1996)

6. Charniak, E.: Statistical techniques for natural language parsing. AI Magazine 18
(1997) 33-44

7. Charniak, E.: Tree-bank grammars. In: Proc. of the Thirteenth National Con-
ference on Artificial Intelligence. Volume 2., AAAI Press / MIT Press. (1996)
1031-1036

8. Ratle, A., Sebag, M.: Avoiding the bloat with probabilistic grammar-guided genetic
programming. In Collet, P., Fonlupt, C., Hao, J.K., Lutton, E., Schoenauer, M.,
eds.: Artificial Evolution 5th International Conference, Evolution Artificielle, EA
2001. Volume 2310 of LNCS., Creusot, France, Springer Verlag (2001) 255-266

9. Kool, A.: Literature survey (2000)

10. Araujo, L.: A parallel evolutionary algorithm for stochastic natural language pars-
ing. In: Proc. of the Int. Conf. Parallel Problem Solving from Nature (PPSNVII).
2002

11. éamp)son, G.: English for the Computer. Clarendon Press, Oxford (1995)

