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Ambiguity in the biomedical domain represents a major issue when performing Natural Language
Processing tasks over the huge amount of available information in the field. For this reason, Word
Sense Disambiguation is critical for achieving accurate systems able to tackle complex tasks such as infor-
mation extraction, summarization or document classification. In this work we explore whether multilin-
guality can help to solve the problem of ambiguity, and the conditions required for a system to improve
the results obtained by monolingual approaches. Also, we analyze the best ways to generate those useful
multilingual resources, and study different languages and sources of knowledge. The proposed system,
based on co-occurrence graphs containing biomedical concepts and textual information, is evaluated
on a test dataset frequently used in biomedicine. We can conclude that multilingual resources are able
to provide a clear improvement of more than 7% compared to monolingual approaches, for graphs built
from a small number of documents. Also, empirical results show that automatically translated resources
are a useful source of information for this particular task.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

There are multiple scenarios in the biomedical domain in which
data scarceness is one of the major issues for building a system
that successfully performs Natural Language Processing (NLP)
tasks. This scenarios include studies developed in low-income or
middle-income countries in which health research efforts and
resources are unequally distributed [1], or works regarding low
resource languages. Also, information related to specific tasks such
as the study of rare diseases is scarce and difficult to summarize, as
well as time-consuming for the few experts in the area [2]. Hence,
we are talking about poorly documented problems, for which most
of the available corpora in the literature will be small [3]. Widely
explored in the NLP literature, multilinguality has been proven to
be a really useful source of information when it comes to NLP tasks
[4–6]. The use of multilingual data could palliate this lack of infor-
mation in some fields of the biomedical domain. Hence, one of the
initial hypothesis of this work considers that significant improve-
ments can be achieved in NLP tasks in the biomedical domain by
adding multilingual information to a knowledge-based system.

In particular, we focus on the Word Sense Disambiguation
(WSD) task, in which the main objective is to solve the lexical
ambiguity [7,8] of biomedical documents such as scientific papers
or medical reports. Given a test sentence which contains an
ambiguous term, a system should determine which of its possible
senses is the most appropriate considering the context. For exam-
ple, the word ‘‘surgery” may refer to the branch of medicine that
applies operative procedures to treat diseases, or to one of those
operative procedures. There exist many different types of lexical
ambiguity in biomedical documents, which represents an addi-
tional challenge when performing WSD in this domain [9]: words
and phrases with more than one possible meaning, abbreviations
with more than one possible expansion, or names of genes which
may also contain ambiguity when standard naming conventions
are not followed (more than one thousand gene terms overlap with
generic English meanings [10]). The use of biomedical concepts, in
addition to plain text, when working with medical documents, can
be seen as another challenge, since the process of transforming
plain text into biomedical concepts is an additional step not con-
sidered when working with more general texts, that is, not belong-
ing to a specific domain [11].

It is difficult to find works in the literature that apply multilin-
guality to the WSD task, probably due to the lack of bilingual cor-
pora providing enough useful information for disambiguation, that
is, a wide enough collection of documents containing ambiguous
terms, and with a balanced number of occurrences for each possi-
ble sense of such terms. Yet, WSD is of paramount importance for
many document processing tasks, such as summarization, text
classification or information extraction. New possibilities of
improvement related to WSD are thus highly relevant in the NLP
field.
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The main contribution of this paper is the application of multi-
lingual techniques to an unsupervised graph-based approach for
performing WSD in the biomedical domain, to analyze the
improvements that can be achieved by this kind of data when eval-
uating this multilingual system on widely known datasets contain-
ing a range of ambiguities. We perform a thorough analysis of the
conditions under which the proposed approach becomes a useful
and powerful tool to solve theWSD problem.We also explore ways
of dealing with the lack of available bilingual corpora, as well as
different languages and their contributions to possible
improvements.

The rest of the paper is organized as follows: Section 2 provides
background on approaches regarding multilinguality for WSD, and
WSD in the biomedical domain. Section 3 presents the system and
algorithms used in this work, explaining in detail all the steps
involved in the disambiguation process. Considerations
about the test environment used for evaluation are presented in
Section 4. The different experiments and the results obtained, as
well as a detailed discussion for each of them are described in
Sections 5–7 respectively. An example of behavior of the system
and the disambiguation process is presented in Section 8.
Finally, Section 9 contains the final conclusions and future lines
of work.
2. Previous work

Multilinguality has been widely explored in NLP processes, and
especially in WSD tasks, for which parallel corpora have been used
as source of information, given their potentiality for disambigua-
tion [12]. In that work, an evaluation framework and an approach
for measuring the distance between senses were proposed. The
translation of an ambiguous word from a language into another
can offer very useful clues about its disambiguation in any of the
studied languages. Other works have also exploited this kind of
resources for automatically tagging senses using sense inventories
for each of the languages in a corpus [13], or for implementing
supervised models that make use of multilingual features
extracted from the corpus [14]. Apart from parallel corpora,
resources such as comparable corpora, which are not restricted
to document-level or sentence-level alignments across languages
[15], may also be good resources for this kind of tasks. The auto-
matic generation of these multilingual resources has been also
studied and compared with manually generated multilingual cor-
pora [16]. WSD has been frequently addressed under a supervised
point of view [17,18], originally through methods based on proba-
bilistic models and their variants [19], as well as other machine
learning algorithms [20], and in the last few years exploiting the
development of word embeddings [21]. However, many unsuper-
vised and knowledge-based techniques have been also developed
in order to deal with the lack of annotated training information
[22,23]. Particularly, graph-based techniques have been explored
in this domain, although most of them make use of WordNet
[24] as knowledge base for extracting the information used for dis-
ambiguation. For example, different semantic similarity measures
are computed in [25] for generating a graph between the ambigu-
ous target term and its surrounding words, depending on the
importance of the relationships between senses of the target word
and senses of the context words, given by those similarity mea-
sures. The disambiguation is performed by running different cen-
trality algorithms over the resulting graph, hence highlighting
the most suitable sense. Other similar works make use of the dif-
ferent lexical chains (sequences of semantically related words) that
can be found in the text containing the ambiguous word, for build-
ing graphs which will eventually help in the disambiguation pro-
cess, through different algorithms [26,27].
Regarding the biomedical domain, WSD is a key step to auto-
matically access, retrieve and process the increasing amount of
available unstructured textual information [11]. WSD processes
should be implemented in almost every system attempting to per-
form more complex NLP tasks, such as summarization [28] or
information extraction [29]. As in general WSD, it is commonly
accepted that most of the systems performing biomedical WSD
can be separated into two main groups: data-driven or algorithms
that need labeled training data, and knowledge-based techniques
[30]. Many works performing supervised WSD can be found in
the literature, most of them making use of linguistic features that
are usually employed for performing WSD in more general
domains [9]. Features such as part-of-speech (POS) tags, unigrams
and bigrams are used in [31] for training Naïve Bayes classifiers,
decision trees and Support Vector Machines (SVMs) and their
results are compared. SVM is also used in [32] for abbreviation dis-
ambiguation. Vector Symbolic Architectures (VSA) have been used
in [33] for encoding vector representations for the ambiguous term
and each of its senses. This representation can be reversed for new
instances containing the ambiguous term in order to recover the
appropriate sense for the context. More recent works have also
applied state-of-the-art deep learning techniques such as neural
word embeddings to acronym disambiguation [34]. In this work,
different techniques are implemented for deriving word embed-
dings of ambiguous terms, and their performance is compared
inside a system which uses a SVM algorithm, taking the word
embeddings as inputs. Also semi-supervised works which intro-
duce ‘‘pseudo-data” [35] or create automatically extracted and
annotated training corpus for building Machine Learning (ML) sys-
tems [36] present successful results in the considered task.

In the present work we are going to explore knowledge-based
approaches, based on initially untagged corpora and external
resources such as the Unified Medical Language System (UMLS)
Metathesaurus [37]. In this database, biomedical concepts are
unequivocally represented through Unique Concept Identifiers
(CUIs), and linked together depending on their relationships [38].
Knowledge-based methods usually take advantage of this repre-
sentation and the additional information that it provides for per-
forming the disambiguation [39,40]. Other knowledge-based
systems will be defined and compared against the proposed sys-
tem in subsequent sections. As far as we have been able to find
in the literature, the use of multilingual information for performing
WSD in the biomedical domain has not been explored, and hence
the main motivation of this work is to analyze this field of study
and offer results either encouraging or advising against the use
of multilingual information.
3. System description

The multilingual technique described in this paper makes use of
a co-occurrence graph as source of knowledge for performingWSD.
This co-occurrence graph, whose theoretical background is
described in detail in [41], is based on the hypothesis that docu-
ments inside a corpus are consistent, that is, there is a strong ten-
dency for the concepts found in a document to be related. Since
this may not be true for all the concepts in the document, statisti-
cal analysis is applied to identify those concepts in documents that
do not fulfill this hypothesis. In this analysis, only those pairs of
concepts frequently co-occurring in the same documents are
linked in the graph. This technique for building the co-
occurrence graph has been previously used for general WSD tasks,
such as Cross-Lingual WSD [42], with successful results, which
suggests that a similar approach could also lead to competitive
results in biomedical WSD. Also, the success of the approach when
tested on different WSD problems allows us to rely on the ade-
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quacy of using the proposed co-occurrence graph on this new
problem.

In this particular work, we consider two types of concepts that
may eventually become nodes of the co-occurrence graph: First of
all, we have specific medical concepts that can be found in the
UMLS database, and are identified through their CUIs. This identi-
fier is the required output of a system that performs WSD in the
biomedical domain, since it unequivocally represents a specific
sense. Hence, this information is crucial to exactly determine
which sense is the most appropriate for an ambiguous word given
its context. However, the UMLS database is mainly restricted to the
English language, and hence we need to define another type of con-
cepts which represent the additional information given by other
languages, and even by the English language. This second type of
concepts are words in the documents, carefully annotated and fil-
tered in order to eliminate all the non-informative words. In partic-
ular, we will focus on nouns and adjectives for considering
informative words and avoiding introducing too much information
into the knowledge base (the co-occurrence graph), which may
lead to unmanageable graphs.

Fig. 1 illustrates the complete system: In part (a), we can
observe the creation of the knowledge base, which requires a pre-
liminary annotation step. For this step, we have documents written
both in English and in any other language which will be used for
enriching the knowledge base. The text of each of the documents
in the original set is transformed into medical concepts (UMLS
CUIs), and nouns and adjectives from English and other languages
are extracted. This new document set is then used for building the
co-occurrence graph, through the statistical analysis that will be
detailed later on. Part (b) of the figure represents the disambigua-
tion of a test instance. First, the test instance has to be translated
into every language in the multilingual corpus. The ambiguous tar-
get term (represented by X in the figure) is located in the text, and
its possible senses (X1;X2; . . . ;Xn) are extracted from a dictionary.
Then, the text of the original test instance, written in English, is
mapped onto CUIs. Also nouns and adjectives are extracted from
the English sentence and the translated ones. With this informa-
tion (CUIs and textual information) we can feed the co-
occurrence graph and apply a disambiguation algorithm that will
Fig. 1. Construction of the co-occurrence graph (part
select, among those possible solutions, the most suitable sense of
the ambiguous term in that context.

In the next subsections, the annotation phase, as well as all the
steps involved in the disambiguation, are detailed.

3.1. Annotation

The first step in the creation of the co-occurrence graph is to
annotate the biomedical concepts that appear in the documents.
As we stated before, we have two types of concepts: CUIs and
words. In order to filter all the non-informative words out of the
text documents, we need to lemmatize and tag those documents
with Part-Of-Speech (POS) tags. This procedure is automatically
performed by the TreeTagger tool [43], both for English and for
the other languages in the multilingual corpus considered in this
work. For generating the other kind of concepts that we want to
include in our co-occurrence graph (UMLS CUIs), we need to trans-
form the plain text written in English into CUIs that represent
equivalent medical concepts. This step could be carried out by
manual annotation, although in our case we perform it automati-
cally, through the MetaMap program [44], which allows us to split
the text inside a document written in English into phrases, and
map each of those phrases onto a set of UMLS CUIs. This program
offers the possibility of using a disambiguation server which helps
the user to select a candidate for each phrase in the text. We make
use of this server when annotating the documents that will be used
for building the document graphs. If it was not used, each time an
ambiguous medical concept appeared in a document it would be
replaced by all its possible senses (CUIs) and consequently the
co-occurrences would not provide us useful information for disam-
biguation. However, as the configuration of the disambiguation
server can be set when running the program, we have selected
unsupervised methods for this initial disambiguation in all the
experiments reported in this work. This way, we assure that the
unsupervised nature of our system is maintained through all the
process. A baseline containing the results obtained by the disam-
biguation server considered in our experiments will be reported
in subsequent sections. As we will see, the quality of this
disambiguation is far from the results achieved in this work. We
a) and disambiguation of a test instance (part b).



Fig. 2. Example of annotation of a test instance written in English and Spanish. CUIs from the Metamap-annotated English document, and nouns and adjectives from both
languages are joined together into the final document, which contains concepts for populating the co-occurrence graph.
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maintain the default values for the rest of the configuration param-
eters when running the Metamap program.

Fig. 2 shows an example of the annotation step, for the excerpt
of an abstract written in English and Spanish. We observe the pro-
cess of annotating the English text with the Metamap tool for
extracting the CUIs. Also, both documents are annotated with
TreeTagger for obtaining nouns and adjectives. The final document
contains all the concepts that may eventually become nodes of the
co-occurrence graph.

3.2. Graph construction

The annotation step provides us with a set of documents, each
of them containing a list of biomedical concepts represented by
their UMLS CUIs, as well as nouns and adjectives in both English
and the additional language or languages we use for enriching
our co-occurrence graph. The next step is to determine the statis-
tical significance of the co-occurrence of each possible pair of con-
cepts (either CUI or word) inside this set of documents. For this
purpose, we define a null model in which concepts would be ran-
domly and independently distributed among the documents of a
corpus. We then compare the actual co-occurrences of each pair
of concepts against this null model (their probability of co-
occurrence by pure chance) and select those that present a high
statistical significance (low probability of being generated by the
null model). More specifically, we calculate a p-value p for the
co-occurrence of each pair of concepts in our corpus. If p lies below
a threshold next to 0, the co-occurrence is considered to be statis-
tically significant, and hence those concepts are considered to be
related, and linked in the graph.
We consider two concepts c1 and c2 appearing in n1 and n2

number of documents respectively (total number of documents is
n). We calculate in how many ways those concepts could co-
occur in exactly k documents, by dividing the document collection
in four different types of documents: k documents containing both
c1 and c2, n1 � k documents containing only c1, n2 � k containing
only c2, and n� n1 � n2 þ k containing neither c1 nor c2. The num-
ber of possible combinations is given by the multinomial
coefficient:

N

k;n1 � k;n2 � k

� �
ð1Þ

The probability of those concepts exactly co-occurring k times
by pure chance is given by:

pðkÞ ¼ N

n1

� ��1 N

n2

� ��1 N

k;n1 � k;n2 � k

� �
ð2Þ

if maxf0;n1 þ n2 � Ng 6 k 6 minfn1;n2g and zero otherwise.
To write Eq. (2) in a way that could be computationally more

convenient, the notation ðaÞb � aða� 1Þ � � � ða� bþ 1Þ is intro-
duced. For any a P b, and without loss of generality we assume
that n1 P n2 P k. Then,

pðkÞ ¼ ðn1Þkðn2ÞkðN � n1Þn2�k

ðNÞn2 ðkÞk
¼ ðn1Þkðn2ÞkðN � n1Þn2�k

ðNÞn2�kðN � n2 þ kÞkðkÞk
;

ð3Þ

where, in the second form, we used the identity ðaÞb ¼ ðaÞcða� cÞb�c ,
valid for any a P b P c. Finally, Eq. (3) can be rewritten as
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pðkÞ ¼
Yn2�k�1

j¼0

1� n1

N � j

� �

�
Yk�1

j¼0

ðn1 � jÞðn2 � jÞ
ðN � n2 þ k� jÞðk� jÞ :

ð4Þ

The following p-value p for the co-occurrence of two concepts
can now be defined:

p ¼
X
kPr

pðkÞ; ð5Þ

where r is the number of documents of our actual corpus in which
we can find c1 and c2 together. As we stated before, if p lies below a
specific threshold p0 next to 0, the co-occurrence is statistically sig-
nificant and a link between c1 and c2 is created in the graph. The
maximum p-value for statistical significance purposes usually
found in the literature is p0 ¼ 0:01 or p0 ¼ 0:05 (99% or 95% of sta-
tistical trust). In this work, we have defined a maximum p-value
(threshold) of p0 ¼ 0:01 for all the experiments described.

It is important to notice that the approach described here has
the advantage that it does not assume that word frequencies are
normally distributed, unlike some alternative measures of lexical
co-occurrence [45]. For example, a chi-squared method would
assume data to follow a gaussian distribution, which is not valid
for many cases, especially when the number of co-occurrences is
small. Our data correspond to a hypergeometric distribution
(which only approximates gaussian for very large values, so chi-
squared would not be recommended in this case). Hence we
directly calculate how our actual data deviate from the hypergeo-
metric distribution (null model).
3.3. Disambiguation

Once that we have built our co-occurrence graph, we need to
define a disambiguation algorithm. This algorithm will allow us
to determine the most suitable sense (CUI) of an ambiguous term
given its context, among all the possible senses provided by a dic-
tionary. In other general WSD tasks, the selection or construction
of this dictionary is a key point for assuring the good performance
of a system [46]. However, in this domain the dictionary that con-
tains the possible senses of every target word can be automatically
extracted from the UMLS database itself. In particular, in the con-
sidered evaluation framework, which will be explained later on,
this dictionary of senses is provided within the test dataset.

Given a test instance, we need to convert the plain text written
in English onto the set of CUIs that represent all the medical con-
cepts that can be found in the text, also using the Metamap pro-
gram. When a term in the text is ambiguous, Metamap assigns
all the possible CUIs that may correspond to it. When it comes to
a target concept, this set of possible CUIs becomes the ambiguity
that our system is trying to solve. That is, the disambiguation ser-
vice provided by Metamap is not used in this step, since it would
give us a priori information about the possible senses of the con-
cepts in the context of the target word. The rest of the configura-
tion parameters are also set to their default values. The
information needed to feed the graph for performing the disam-
biguation should be composed by all the possible types of concepts
that can be found in the co-occurrence graph, that is, CUIs, nouns
and adjectives in English, and nouns and adjectives in any addi-
tional language used for enriching the graph. For extracting this
information, we need to obtain a translation of the test instance,
which is only written in English. This translation is automatically
obtained through the use of the Yandex translator,1 an automatic
1 https://translate.yandex.com.
translation engine which allows users to obtain translations between
a large number of languages. Once we have this translation of the
test instance, we can run the TreeTagger tool over the English and
the translated version and select the nouns and adjectives of both
texts, to enrich the original context containing only the CUIs.

In this work we are going to explore two different algorithms
for disambiguation:

� One-Step algorithm: The first disambiguation algorithmmakes
use of the direct links in the graph for determining the weight of
the relationships between a particular solution (one of the
senses of the target term) and the concepts found in the context
of the target term. For the purposes of this algorithm, we have
developed a way to measure the importance of a link between
two concepts of the graph, considering the significance of their
co-occurrence. Given Eq. (5) in Section 3.2, the weight of the
link between two nodes i and j can be quantified in a practical
way by defining it as wij ¼ logðp0=pijÞ, where p0 is the selected
threshold for the co-occurrence graph and pij is the p-value cal-
culated using Eq. (5) and defining r as the actual number of co-
occurrences between nodes i and j. Hence, the weight of the link
will be proportional to the order-of-magnitude difference
between p and p0.
Using the weighted co-occurrence graph we can rank the possi-
ble senses of the target term in the co-occurrence graph given
the test instance. Given a test instance T containing a target
term t and the terms of its context C, the set of possible senses
of the term is represented by St ¼ s1; s2; . . . ; sn. For each si, we
retrieve from the graph the set of concepts SC ¼ c1; c2; . . . ; cm,
which contains the concepts from C that are directly connected
to si in the graph. We define the weight of a link between a con-
cept ck 2 Sc and a sense si 2 St to be wki. Hence, the final weight
of si, denoted by Wi, is computed through the following
formula:
Wi ¼
Xm
k¼1

wki; ð6Þ

that is, the final weight of si is computed by adding up the
weights of links between concepts from the context and si itself.
After computing the weights of every possible sense of the target
term, the system will propose the sense with the highest rank to
be the most appropriate sense for the test instance.

� Personalized PageRank: The second algorithm that we have
selected for performing this step is the Personalized PageRank
algorithm, initially introduced in [47]. This algorithm is based
on the PageRank algorithm [48] which has been successfully
applied to WSD tasks [49]. The PageRank algorithm is used over
a graph for ranking the importance of each of its nodes. It is
based on the relative structural importance of each node of
the graph, represented by its incoming and outgoing edges.
The algorithm models, for each node, the probability of a ran-
dom surfer over the graph ending on it. PageRank values for
the whole graph can be calculated through the following
formula:
P ¼ cMP þ ð1� cÞv ; ð7Þ
where P is the vector that contains the PageRank values for each
node, c is a constant called ‘‘damping factor” usually set to 0.85,
M is the matrix containing the values of the out-degrees of the
nodes and v is a N � 1 stochastic vector, being N the number
of nodes in the graph. In this work, we will maintain the default
value of the damping factor, c ¼ 0:85. Hence, the first element of
the formula represents the movement of the random surfer
between connected nodes, and the second one its probability
of teleporting to any node without following the edges of the

https://translate.yandex.com
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graph. By means of v, the probability of randomly jumping into a
node of the graph can be distributed among the nodes of the
graph in different ways. The Personalized PageRank approach
makes use of this vector v for assigning higher probabilities to
specific nodes of the graph. These probabilities will then spread
along the graph, resulting in higher PageRank values for those
nodes more influenced by the initial nodes highlighted in v.
In this case, the nodes that will be powered up in vector v are
those that represent concepts (CUIs, nouns or adjectives in Eng-
lish, and nouns or adjectives in any additional language) that
appear in the context of the target term we want to disam-
biguate. Once that we have C (concepts from the context of
the test instance), we build v as a N � 1 vector whose values will
be v i ¼ 1

jCj if node i represents a concept of the context, and 0

otherwise. After performing the Personalized PageRank algo-
rithm, we will select the node with highest rank among those
representing possible senses of the target concept.

4. Test environment

4.1. Test dataset

In this section we present the dataset that will be used to eval-
uate the performance of our system in all the experiments. This
test dataset is the NLM-WSD corpus [50], which is composed of
50 general ambiguous terms, with 100 instances per term. Each
instance is an abstract downloaded from Medline containing an
ambiguous term. In the creation of the corpus, each instance was
manually annotated with the CUI that represents the correct sense
for the target term present in the abstract. However, during the
creation of the corpus, annotators could select to mark as ‘‘None”
those instances for which none of the possible senses applied.
We have removed those instances, so the final test dataset, which
will be referred to as ‘‘NLM”, contains 3,983 instances and 49 terms
(since all the instances were marked as ‘‘None” for the term
‘‘association”).
2 Corpus available at nlp.uned.es/�aduque/EBCRD_public.zip.
4.2. Knowledge base

For a proper analysis of the level of improvement that can be
achieved by introducing multilinguality in the knowledge base
used for disambiguation (the co-occurrence graph), we need to
define two types of graphs: The first type is built using English doc-
uments, that is, containing CUIs, and nouns and adjectives in Eng-
lish. We will refer to this type of graph as ‘‘English graph” in the
rest of the paper. The second type of graph can be seen as an
enrichment of the former one, and is built using English documents
and documents written in the other language or languages used for
adding multilinguality. Hence, this second type of graph will con-
tain CUIs, nouns and adjectives in English, and nouns and adjec-
tives in the other language or languages. This type of graph will
be referred to as ‘‘Mixed graph” in the rest of the paper.

When we create the co-occurrence graph from a set of docu-
ments, we will generate co-occurrence links between two CUIs,
but also between a CUI and a word (noun or adjective), or even
between words. Therefore, the final structure of the graph (number
of nodes and connections between nodes) will change, and we
expect this enhanced structure of the graph to improve the accu-
racy of the system in the WSD task. As we briefly introduced in
Section 1, the size of the knowledge base is a very important
parameter in this kind of tasks. The methodology that we will fol-
low in all the experiments will be the same: we will compare the
overall accuracy achieved by both English and Mixed graphs as
we increase the number of documents used for building the graph
(knowledge base). This way, we will study whether Mixed graphs
built with small subsets of the original multilingual corpus are able
to overcome results obtained by English graphs built with larger
subsets of the monolingual corpus.

4.3. Evaluation criteria

The measure that will be used for evaluating the proposed sys-
tem in all the experiments will be the accuracy, which can be cal-
culated through the following formula:

acc ¼ NC

NT
; ð8Þ

where NC is the number of correctly disambiguated instances in the
test dataset and NT is the total number of instances to be disam-
biguated (in this case, 3983). This value will be then expressed as
a percentage by multiplying it by 100.
5. First experiment: Elsevier bilingual corpus for rare diseases

The whole objective of this work is to analyze the possible
improvements that can be achieved in a Word Sense Disambigua-
tion task when we create a knowledge base with multilingual
information. Hence, we will first need a multilingual corpus with
documents written in English and at least one more language, in
order to create our knowledge base (the co-occurrence graph). As
we showed in Fig. 2, we transform the text documents into docu-
ments containing a list of CUIs from the UMLS database, and nouns
and adjectives from all the involved languages, that is, we do not
take the order of occurrence of the concepts into account. Hence,
we do not need to work with parallel corpora in which text is
sentence-aligned, but instead we can use comparable corpora con-
taining original documents and their translations into the addi-
tional languages.

The multilingual comparable corpus that we have used for this
first experiment is the ‘‘Elsevier Bilingual Corpus for Rare Diseases”
(EBCRD), which we have developed andmade publicly available.2 It
is a bilingual corpus, written in both English and Spanish, and orig-
inally created by performing a search for abstracts containing rare
diseases (RD) in Ibero-American Elsevier journals whose abstracts
are written in both languages and contain at least one term of the
test dataset. This corpus, which contains 94,003 documents per lan-
guage (for a total of 188,006 documents), will eventually become the
knowledge base used for disambiguation.

Once that we have annotated all the documents in the corpus
(both those written and English and in Spanish), following the
steps described in Section 3.1, we are able to build our English
and Mixed co-occurrence graphs.

5.1. Results

Fig. 3 shows the results obtained in this first experiment. It
illustrates the behavior of the proposed system when we use Eng-
lish graphs and Mixed graphs for performing the disambiguation,
as we increase the number of documents used for building the
graph. That is, from the original corpus we take N documents con-
taining each of the possible ambiguous terms.

We can observe the improvement achieved when we add the
new corpus written in a different language, in this case Spanish,
to the co-occurrence graph. Specially, we find the biggest differ-
ences when the number of documents used for creating the graph
is small, for example for N ¼ 20 we get an accuracy of 58.45% for
the English graph and 62.57% for the Mixed graph, which repre-
sents a relative improvement of 7.05%. When graphs become big-
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Fig. 3. Evolution of the accuracy for the English and Mixed graphs of the Elsevier corpus as we increase the number of documents per ambiguous term used for building the
co-occurrence graph.

Table 1
Size of the document set (documents per ambiguous term and total number of
documents) and comparison (accuracy in %) of the disambiguation algorithms. Bold
represents the best disambiguation algorithm in each case.

Docs per term Total # docs One-Step PPR

10 393 59.83 60.61
20 779 62.57 61.13
30 1185 64.85 62.01
40 1548 64.20 62.47
50 1908 66.43 62.87
100 3645 67.86 67.61
200 6853 68.27 64.75
500 15,202 67.74 62.42
1000 26,414 68.21 64.47
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ger the improvement achieved by Mixed graphs becomes smaller.
Considering what we first stated in Section 1 about the reduced
size of corpora (and specifically multilingual corpora) in the
biomedical domain, the fact that multilinguality performs better
in smaller datasets is a good indicator.

Results shown in Fig. 3 refer to the One-Step disambiguation
algorithm. We also want to compare the performance of the two
considered disambiguation algorithms. Table 1 illustrates the
achieved accuracy for different sizes of the set of documents used
for creating the graphs, both with the One-Step and the Personal-
ized PageRank algorithms.

In this case, we represent both the number of documents per
ambiguous word and the total number of documents of the result-
ing graph. Since documents may contain more than one ambiguous
word, the total number of documents used for building the graph is
not N times the number of ambiguous words in the dataset (49),
but a smaller number, as we can observe in the table. Although
there is one case in which the Personalized PageRank (PPR) over-
comes the results obtained by the One-Step algorithm, in general
we can observe that the latter algorithm generally outperforms
PPR.
5.2. Discussion

Results shown in Section 5.1 give us a first indicator of the ben-
efits of using multilinguality when the number of documents used
for building the co-occurrence graph is small. However, as we have
stated before, manual translations for creating multilingual cor-
pora are expensive and time consuming. Hence, multilingual cor-
pora are not always available for every subset of documents,
specially when the documents are very specific. This leads us to
the idea of exploring automatic translations in order to generate
multilingual comparable corpora that could be used in a similar
way to this experiment. Once we obtain this automatically trans-
lated corpus, we will need to analyze whether the quality of the
automatic translation allows the system to achieve at least a sim-
ilar accuracy to the one reported in this first experiment. Table 1
has also shown that for this particular corpus, the One-Step algo-
rithm usually performs better than the Personalized PageRank
algorithm.

It is important to remark that the multilingual approach offers
the best improvements when the co-occurrence graph is built with
a small number of documents: between 10 and 200 documents per
ambiguous term, that is, between 400 and 7000 documents in
total. When the number of available documents is higher, results
converge to similar accuracy values.
6. Second experiment: automatic translation

Considering the discussion about the first experiment, the sec-
ond experiment that we propose in this work is quite straightfor-
ward: We want to analyze the performance of the system when
we use automatic translations for generating a multilingual corpus,
taking an English corpus as original source of information. Many
different automatic translators can be found in the literature. In
this case we have used the Yandex translator for generating the
multilingual documents, since it provides a free API for using the
translating services. It is a self-learning statistical machine transla-
tion systemwhich creates language models and translation models
through the analysis of parallel texts, and connects these models
with a decoder. This decoder chooses the best option from the
translation model, matches it with the language model to prove
its validity, and provides statistics regarding the best result. Using
this tool, we generate automatic translations from English to Span-
ish for every document in the Elsevier Bilingual Corpus for Rare
Diseases. This way we are able to compare the performance of
our system both using manual and automatic translations from
the same original English corpus to enrich the knowledge base
(our co-occurrence graph) with multilingual information. The
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annotation step is followed in the same way as before in order to
extract the CUIs and nouns and adjectives in English and Spanish
that will populate the co-occurrence graph. We use the same sub-
sets of documents for analyzing the evolution of performance as
we increase the number of documents per ambiguous term.
Table 2
Results (accuracy in %, 50 documents per ambiguous word) obtained with combi-
nation of different languages: English (EN), Spanish (SP), German (GE), Russian (RU)
and Italian (IT). Bold highlights the best results for the combination of English with
none, 1, 2, 3 or 4 additional languages.

Language(s) Accuracy (%)

EN 63.27
EN + SP 66.78
EN + GE 64.75
EN + RU 65.45
EN + IT 65.50

EN + SP + GE 67.76
EN + SP + IT 67.26
EN + SP + RU 67.49
EN + GE + RU 65.91
EN + GE + IT 66.11
EN + RU + IT 66.01

EN + SP + GE + RU 67.71
EN + SP + GE + IT 67.66
EN + SP + RU + IT 66.98
EN + GE + RU + IT 66.51

EN + SP + GE + RU + IT 67.24
6.1. Results

Fig. 4 completes Fig. 3 with results, for the One-Step algorithm
(which performs better than PPR according to Table 1), obtained by
the system with a Mixed graph created with the original English
documents from the corpus, and Spanish documents created with
the Yandex translator.

Results obtained by the new Mixed graph (Mixed Yandex) also
outperforms those achieved by the English graph, and even those
achieved by the original Mixed graph (Mixed Manual). This
improvement is particularly noticeable for small subsets of docu-
ments. For example, if we consider N ¼ 30 (being N the number
of documents per ambiguous term), we can observe an accuracy
of 62.69% for the English graph, 64.85% for the Mixed Manual graph
and 65.98% for the Mixed Yandex graph. That is, the Mixed Manual
graph obtains a relative improvement of 3.45% over the English
graph, and the Mixed Yandex graph a relative improvement of
1.74% over the Mixed Manual graph (and 5.25% over the English
graph). The Mixed Yandex graph is even able to overcome the Eng-
lish graph for bigger subsets of documents, for example for
N ¼ 1000, the Mixed Yandex graph obtains an accuracy of 69.32%
and the English graph an accuracy of 68.69% (relative improvement
of 0.92%). Statistical tests have been performed for testing the sig-
nificance of the differences between the results offered by the Eng-
lish, Mixed Manual and Mixed Yandex graphs. The tests have been
applied to the results obtained for the range of sizes which repre-
sents those graphs built with a small number of documents, partic-
ularly between 5 and 50 documents per word. That is the range in
which we are finding the most important differences when multi-
lingual information is added to the English graph. As the popula-
tion cannot be assumed to be normally distributed in this type of
tasks, we have applied the Wilcoxon Signed-Rank test [51]. The
results confirm that the differences between the Mixed Manual
and English graphs are statistically significant, as well as the differ-
ences between the Mixed Yandex and English graphs. However, the
differences between the Mixed Yandex and Mixed Manual graphs
Fig. 4. Evolution of the accuracy for the English and Mixed graphs of the Elsevier corpus
(Mixed Yandex) as we increase the number of documents per ambiguous term in the k
are not statistically significant. These results indicate that the addi-
tion of multilingual information significantly improves results over
the test dataset, whereas the difference between working with
manual and automatic translations is not so relevant for the task.

Considering that automatic translations are far easier to obtain
than manual translations, we have performed an additional exper-
iment in which we obtain translations for a small subset of docu-
ments in other languages apart from Spanish. Table 2 shows the
results obtained by the system for the English graph, and for Mixed
graphs created with different combinations of languages. We have
selected a subset of 50 documents per ambiguous word to analyze
the results, since previous experiments have shown that multilin-
guality is able to get better improvements for smaller subsets of
documents. The considered languages are: Spanish (SP), German
(GE), Russian (RU) and Italian (IT).

We can observe results for the English graph, and Mixed graphs
created with the combination of English documents and one, two,
three or all of the considered additional languages. Spanish is the
language that obtains better results when combined alone with
English, followed by Italian, while Russian and German offer less
(English and Mixed Manual) and the Mixed graph built with its Yandex translation
nowledge base.
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improvement when combined with English. This fact may indicate
that the translator is working better for Romance languages. How-
ever, the best result (accuracy of 67.76%, relative improvement of
7.10% over the English graph) is achieved when we combine Span-
ish and German translations with English documents. This can be
due to the differences between the root languages of Spanish and
German (Latin and Germanic languages respectively). The amount
of information introduced by two languages of different origins
and structured is probably higher than what we can expect from
two similar languages, such as Spanish and Italian together. Statis-
tical tests have also been applied in a similar way as described for
Fig. 4, although we have only considered those cases interesting for
the purposes of this work. In particular, we have tested the
significance of the differences between results obtained only using
monolingual information (row EN in the Table), adding
multilingual information in Spanish (row EN + SP), since those
are the conditions for previous and subsequent experiments, and
adding multilingual information in Spanish and German (row
EN + SP + GE), as that is the case in which the highest accuracy is
achieved. The differences between multilingual graphs with
English and Spanish information, and monolingual graphs are sta-
tistically significant, as well as those between multilingual graphs
with English, Spanish and German information, and monolingual
graphs. Finally, there is no statistical evidence of significant differ-
ences between using only the Spanish language for enhancing the
graph, or using both Spanish and German.
6.2. Discussion

Although current machine translation systems are not able of
outperforming manual translations, in our case we observe that
the results obtained with a multilingual knowledge base automat-
ically created are better than those results obtained with manually
translated documents. The main reason why this could be happen-
ing is the nature of the disambiguation system described in this
work and the WSD task we are facing. Apart from CUIs and nouns
and adjectives from the original English documents, we are only
using nouns and adjectives from the translated texts for building
our knowledge base. We consider that it is likely that our system
is giving more importance to the correct translation of these words
than to the structure of the translated sentences (which is far more
difficult for an automatic translator to represent correctly). More-
over, sometimes manual translations rely on the personal interpre-
tation of the human translator, which can lead to less literal
translations than those obtained by an automatic system. Although
this can be positive when we expect a more thorough translation,
in this case the creation of more literal translations can be benefi-
cial for our purposes, since they are more likely to directly solve
the ambiguity of some words. In this second experiment, we ascer-
tain that using a small number of documents (between 10 and 200)
still offers the best improvements when it comes to a multilingual
approach, in this case obtained through automatic translations.

Besides, Table 2 also indicates that generating automatic Span-
ish translations with Yandex can offer successful results, while the
combination of other languages may only slightly improve the
results when the languages are different enough to provide new
information.
3 http://www.ncbi.nlm.nih.gov/pubmed
4 Corpus available at nlp.uned.es/�aduque/NLM_related_public.zip.
7. Third experiment: NLM corpus

In the previous experiments we have proven the usefulness of
applying multilinguality for performing WSD in the biomedical
domain. However, as we stated in Section 5, the multilingual cor-
pus used in those experiments was created from a search related
to rare diseases. The information obtained in the second experi-
ment regarding the possibility of using automatic translations
allows us to explore more specific corpus, a priori written only in
English, which could offer better results. In particular, as the
NLM test dataset is generated from PubMed3 abstracts, we are
interested in creating a new corpus with abstracts from PubMed
which contain ambiguous terms from the NLM test dataset. This
way, we expect our knowledge base (the co-occurrence graph) to
get closer to the characteristics of the test dataset, and hence achieve
better accuracy. The last step will be to analyze whether a graph
enriched with automatic translations of this ‘‘NLM-related” corpus
is able to improve the accuracy of the system in the proposed
WSD task, in a similar way to the previous experiments.

For this purpose, we downloaded our own set of abstracts from
Medline, using the Entrez interface [52]. We performed a search for
each ambiguous term of the test dataset, restricting the results to
1000 abstracts per term. In order to avoid downloading abstracts
that could appear in the test dataset, we have only downloaded
abstracts from year 2014. For maintaining the unsupervised nature
of our technique, we do not specify in any way the sense of the
ambiguous term for performing the search, so in the downloaded
abstracts any possible sense of the target term can be found. The
total number of abstracts in this set is 35,282. Although we down-
loaded 1000 possible abstracts for each of the 50 ambiguous terms
in the dataset, there are abstracts containing more than one term,
and hence the reduction of the number of documents.4

After creating the English corpus, we applied the same proce-
dure explained in Section 6, using Yandex translator for generating
the Spanish translation of each document in the English corpus.
Then we perform the annotation step for extracting CUIs and
nouns and adjectives in both languages, and we create the final
co-occurrence English and Mixed graphs. As we did in the previous
experiments, we are going to analyze the performance of the sys-
tem as we increase the total number of documents used for build-
ing the graphs. In this case, the number of documents per
ambiguous term is already balanced, and hence a simple random
subsampling of the full corpus should be enough to obtain subsets
of documents in which we find a similar number of documents per
ambiguous term.

7.1. Results

Table 3 shows the results obtained by the English and Mixed
graphs built with documents from the NLM-related corpus. Perfor-
mance by both One-Step and PPR algorithm is also shown, to ana-
lyze whether they behave differently when graphs are built from
this new corpus.

Overall accuracy obtained in this experiment is quite higher
even for English graphs, probably due to the similarities between
the test dataset and the NLM-related corpus used for building
the graphs. Both the test dataset and the co-occurrence graph are
created with abstracts downloaded from PubMed, and hence
knowledge in the co-occurrence graph is more likely to present
the same characteristics as the test dataset, which may lead to bet-
ter results in the disambiguation process. Despite this improve-
ment of the general results, we can observe in the table that
Mixed graphs are still able to overcome English graphs, although
the differences are smaller. This differences are also more impor-
tant when we consider small subsets of documents (relative
improvement of 2.02% for graphs built from 1000 documents),
while English and Mixed graphs perform similarly when we use
the complete set of 35,282 documents for building them. Differ-
ences between the disambiguation algorithms are also bigger as
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Table 3
Results (accuracy in %) using the NLM-related corpus, for different sizes of the document set used for building the graph. Bold highlights the best configuration (algorithm and
type of graph) for each experiment.

Total # docs One-step PPR

English Mixed English Mixed

1 K 73.14 74.62 66.28 66.98
10 K 74.42 74.67 73.61 74.52
20 K 75.55 76.53 74.77 76.90
Full 76.05 77.48 77.68 77.63
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the subset of documents is smaller, specially for 1000 documents
(relative improvement of 11.41% for Mixed graphs). However, as
the number of documents increases both algorithms also present
similar results.
7.2. Comparative

Finally, we want to compare the best performance achieved by
our multilingual system with results offered by other state-of-the-
art unsupervised systems performing WSD in the biomedical
domain. For this comparison, we take from Table 3 the best accu-
racy obtained by a Mixed graph which still present differences
with the English graph of the same subset of documents. In this
case, the only additional language used for the Mixed graph is
Spanish, that is, concepts in the graph are CUIs, nouns and adjec-
tives in English, and nouns and adjectives in Spanish. This best
result of 76.90% of accuracy is achieved by a Mixed graph created
with 20 K documents from the NLM-related corpus, selecting PPR
as disambiguation algorithm, and 76.53% of accuracy under the
same conditions, selecting One-Step as disambiguation algorithm
(see Table 4).

In the first row, we show results obtained by running the Meta-
map program against the test dataset, and making use of the dis-
ambiguation server under the same conditions we used for
annotating the documents when building the co-occurrence graph,
as explained in Section 3.1. As we can observe, these results are
quite low in comparison with the accuracy achieved by our system
in all the experiments reported in this work. Results from our sys-
tem are then compared against different WSD systems, all of them
monolingual, that is, they do not make use of multilingual informa-
tion for enriching the available knowledge. The PPR + UMLS sys-
tem [39] uses a graph-based similar approach, which makes use
of a fixed graph built from the UMLS database. The AEC (Automatic
Extracted Corpus) system [53] is a semi-supervised approach that
automatically downloads and annotates abstracts for training a
machine learning system. The JDI (Journal Descriptor Indexing)
method [36] makes use of semantic type vectors that represent
each possible sense of an ambiguous term and computes their dis-
tance to a vector representing the test instance. Although it obtains
Table 4
Comparison of the accuracy (%) achieved by state-of-the-art unsupervised systems
(see text), and our multilingual co-occurrence graph-based system (CO-Graph). The
first row corresponds to a baseline showing the performance of the Metamap
disambiguation server over the test dataset. The asterisk in row JDI indicates
modifications in the test dataset (see text).

System NLM test dataset
Metamap baseline 49.13

PPR + UMLS 68.10
AEC 68.36
JDI 74.75⁄

MRD 63.89
2MRD 55.00

CO-GRAPH (One-Step) 76.53
CO-GRAPH (PPR) 76.90
good results for the NLM corpus, it only takes into account those
senses belonging to different semantic types, hence many
instances of the NLM corpus were removed in this experiment.
That is the reason why results obtained by this system are marked
with an asterisk in the table. Finally, the MRD and 2MRD tech-
niques are applied in [54,55] over the NLM corpus. This technique
makes use of additional information from UMLS (extended defini-
tions of the possible senses) for performing the disambiguation. As
we can observe in the table, our system outperforms all the state-
of-the-art knowledge-based and unsupervised methods when
applied to the NLM dataset, and even semi-supervised ones.
8. Example of disambiguation

In this section a simplified example of how multilingual infor-
mation can improve the performance of our system is presented.
A particular case of disambiguation will be illustrated, by compar-
ing the behavior of the our co-occurrence graph when we use only
English documents for building the graph, and when multilingual
(in this case, Spanish) information is added to the graph.

Fig. 5 shows this example divided in two parts: the top part of
the figure presents a test instance which contains the target word
‘‘ultrasound”, to be disambiguated. A look-up to the dictionary tells
us that the two different senses (CUIs) of ‘‘ultrasound” between
which our system should discriminate are ‘‘C0041618”, referred
to the process of using ultrasounds for diagnosing a disease, and
‘‘C0041621”, referred to an ultrasound wave. Through the process
of annotation of test instances described in Section 3.3, we obtain
all the CUIs that represent concepts from the context of the test
instance by applying the Metamap program to the text. Also, nouns
and adjectives in both English and Spanish are extracted by run-
ning the TreeTagger tool over the original and translated text of
the documents. This set of elements represents the input with
which we will feed the co-occurrence graph.

The second part of the figure (bottom part) illustrates the differ-
ences of applying the disambiguation process using the English
graph, or the Mixed Manual graph. The construction of these two
types of graphs has been detailed in Sections 5 and 6. We can
observe that the English graph does not classify this instance cor-
rectly, while in the Mixed Manual graph, the correct sense of ‘‘ul-
trasound” (‘‘C0041618”) is selected. If we have a look at the
concepts from the context that are directly related to each of the
possible senses of the target word, we observe that the English
graph contains more concepts related to the wrong sense than to
the correct one. That is the reason why in that case, the system
selects the wrong CUI (‘‘C0041621”). When we add multilingual
information to the graph, the number of related concepts to both
the target senses obviously increases. However, in the multilingual
graph the sense that now presents more connections with concepts
from the context is the correct one (‘‘C0041618”), and hence the
algorithm selects that CUI to be the proposed sense for this partic-
ular instance.

It is important to notice that in the example we are not explic-
itly illustrating the use of either of the two disambiguation algo-
rithms studied in this work. In both algorithms it is important



Fig. 5. Example of disambiguation of a test instance. The top part of the figure shows the annotation of the test instances, while the bottom part compares the behavior of the
English graph and the Mixed Manual graph.
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for a particular sense to have as many direct connections with con-
cepts from the context as possible, in order to be selected as the
most appropriate sense for an instance. Nevertheless, there exist
other aspects of the algorithms that are also important, such as
the weights of the links when it comes to the One-Step algorithm,
or the connections between other concepts in the case of the
PageRank algorithm.
9. Conclusions and future work

In this work we have presented an unsupervised system based
on co-occurrence graphs for performing Word Sense Disambigua-
tion in the biomedical domain. The objective of the study is to
determine whether multilingual information is able to improve
the results obtained by monolingual approaches in WSD tasks,
and under which conditions this improvement is real and significa-
tive. In three different experiments performed over a test dataset
widely used in the literature, multilinguality has been proven use-
ful for WSD, particularly when the knowledge base is limited, that
is, the number of documents used for building the graph is small.
For the purposes of this paper, we have used a test dataset com-
posed of general ambiguous words in biomedicine, in order to be
able to analyze the performance of our system when varying the
amount of available information for building the co-occurrence
graph. Results obtained using two different corpora for building
the graphs, one unrelated and the other related to the test dataset,
indicate that a big corpus unrelated to the test dataset achieves
worse results than a small corpus, but related to the test dataset
(for example, the NLM-related corpus with only 1000 documents,
that is, around 20 documents per ambiguous term). These facts
lead us to extrapolate the results obtained in the experiments,
and consider that multilinguality would also be useful when con-
sidering ambiguous words for which less occurrences could be
found in the literature (for example, terms for which one of their
senses represented a rare disease poorly documented).

We have observed how smaller sizes of the co-occurrence graph
lead to similar or even better results than those obtained with big-
ger graphs, which is a very good indicator in terms of efficiency and
resource consumption. For example, we can observe in Table 3 that
Mixed graphs built from a subset of 1000 documents, whose size is
approximately 40 K nodes and 2 million links, are able to obtain
similar results to English graphs from a subset of 20,000 docu-
ments, containing 200 K nodes and more than 8 million links.
The obtained improvements suggest that the translation of general
terms of the context of an ambiguous term provides an important
source of information to select the correct biomedical concept
associated to that ambiguous biomedical term. This information
can be eventually transformed into structured knowledge that
allows us to disambiguate the biomedical terms in the test
instances.

Automatic translations, which are normally much easier to
obtain than manual translations, are able to match, and even out-
perform results from manual translations. This makes the
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approach proposed in this work highly suitable for this kind of
tasks, due to the lack of multilingual corpora in many scenarios
of the biomedical domain. When using automatic translations,
additional languages are proven to be more useful for WSD when
their differences with the original language (in this case, English)
are bigger. In general, the addition of new languages to the multi-
lingual co-occurrence graph only improves the overall results
when those languages are different enough to provide new
information.

Future lines of work include the analysis of similar tasks when
the original language is not English, but other languages that may
present less available resources. Also, possible cross-lingual tasks
for disambiguating a term written in a given language into its most
suitable translation in a different target language will be explored.
We also plan to apply the multilingual techniques described in this
work to other tasks such as relation extraction, and in general to lar-
ger NLP systems performing more complex tasks which need WSD
in their pipelines, for example, automatic text summarization.
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