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Abstract. In this paper we deal with two issues. First, we discuss the
negative effects of term correlation in query expansion algorithms, and we
propose a novel and simple method (query clauses) to represent expanded
queries which may alleviate some of these negative effects. Second, we
discuss a method to optimise local query expansion methods using ge-
netic algorithms, and we apply this method to improve stemming. We
evaluate this method with the novel query representation method and
show very significant improvements for the problem of optimising stem-
ming.

1 Introduction

There is an underlying common background in many of the works done in query
reformulation, namely the appropriate selection of a subset of search terms
among a list of candidate terms. The number of possible subsets grows expo-
nentially with the size of the candidate set. Furthermore, we cannot evaluate
a priori the quality of a subset with respect to another one: this depends on
the (unknown) relevance of the documents in the collection. For these reasons,
standard optimisation techniques cannot be applied to this problem. Instead,
we must resort to heuristic optimisation algorithms, such as genetic algorithms,
that sample the space of possible subsets and predicts their quality in some
unsupervised manner.

Before considering any query reformulation process is very important to take
into account that modern Information Retrieval ranking functions apply the term
independence assumption. This assumption takes on many forms, but loosely it
implies that the effect of each query term on document relevance can be evaluated
independently of the other query terms. This has the effect of rendering all queries
flat, whithout structure.

However, there are many cases in which queries have some known linguistic
structure, such as degree of synonymy between terms, term cooccurrence or cor-
relation information with respect to the query or to specific query terms, etc.
This is typical of queries constructed by a query-expansion method, of stemming
or normalizing terms, of taking into account multi-terms or phrases, etc. Sur-
prisingly, almost all ranking functions (and experiments) ignore this structural
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information: after expansion, selection and re-weighting of terms, a flat query (a
set of weighted terms) is given to the ranking function which assumes terms are
independent and scores documents accordingly.

Specifically, we want to investigate two issues: the selection of adequate terms
for query reformulation and term independence assumption, to propose a new
method that solve the classical problems associated to these issues. The morpho-
logical query structure of the query has been chosen to show how our approach
is capable to improve state-of-art approaches like Porter’s stemmer.

In Section 2 we propose a novel way to represent expanded queries that
encodes information about the term correlation using clauses like set of related
terms. The proposed representations greatly increase the expressivity power of
queries, but at the expense of introducing parameters (weights) which may be
hard to set. Section 3 shows one experiment where our clauses representation
model is adapted to the problem of morphological query expansion. In section 4
we apply it to the problem of optimising the expansion of a term with respect to
its stem. We show that we can significantly improve the performance of Porter
stemming by adapting the expansion to every query. Section 5 draw the main
conclusions and describe the future lines of work.

2 Ranking independent clauses of dependent terms

One of the reasons of the high performance of modern ad-hoc retrieval systems
is their use of document term frequency. It is well known[12] that i) probability
of relevance of a document increases as the term frequency of a query term
increases, and ii) this increase is non-linear. For this reason most modern ranking
functions use an increasing saturating function to weight document terms that
are in the query. An example of this is the term saturating function used as part
as BM25[12] :
__ tf(d,?)
wld ) =y T K (1)
where tf(d,t) is the term frequency of term ¢ in document d, and K1 is a
constant. Similar nonlinear term frequency functions are found in most IR rank-
ing models such modern variants of the vector space model, the language model,
divergence from randomness models, etc. Besides, all these ranking functions
assume that the relevance information of different query terms is independent
and therefore the relevance information gained by seeing query terms can be
computed separately and added linearly (or log-linearly), for example, in BM25:

score(d) := »_w(d,t) - idf (t) (2)

teq

This independence assumption is usually reasonable for short queries (i.e.
“Ttalian restaurant in Cambridge”), since users use each term to represent a dif-
ferent aspect of the query. However, such assumption breaks down for queries
that are sufficiently complex to contain terms with sufficiently close meaning.
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Consider for example the query “Italian restaurant cafeteria bistro Barcelona”.
Having seen the term restaurant twice in a document, which term is more in-
formative: Barcelona or cafeteria? Loosely speaking, if a group of terms carries
the same meaning, the amount of relevance information gained by their presence
should diminish as we see other terms in this group, very much like in equation
(1) does for term frequency, and unlike (2).

This situation arises very often in modern IR tasks and systems, in particular
in the following areas:

— morphological expansion (e.g. stemming, spelling, abbreviations, capitaliza-
tion),

— extracting multi-terms from the query

— query term expansion (e.g. user feedback, co-occurrence based expansion),

— lexical semantic expansion (e.g. using WordNet),

— using taxonomies and ontologies to improve search,

— user modeling, personalization,

— query disambiguation (where terms are added to clarify the correct semantic
context),

— finding similar documents (where the query is an entire document),

— document classification (where the query is a set of documents),

— structured queries (such as TREC structured topics).

We propose to consider two levels of representation: terms and term clauses.
Clauses are sets of weighted terms that are intended to represent a particular
aspect of the query. The weights w represent their relative importance within
the clause (in particular, the strength of the dependence with relevance). Thus,
a query can be thought of as a bag of bags of (weighted) terms:

c:= {(to, wop) , (t1, W), ooy (t‘c|,w|c|)}
q = {01,02, ...,C|q|}

Boolean retrieval models and the Inquery|[3] retrieval model have used query
representations even more general than this. Here we restrict ourselves to this
representation with two levels to give clear semantics to each level: term and
clause. We are going to consider terms within a clause as if they were greatly
dependent with respect to relevance; in fact we will consider them as if they
were virtually the same term. Second, we consider terms across clauses as being
independent with respect relevance, as is usually done across terms.

Conceptually, what we propose is a projection from the space of terms to
the space of clauses. Formally, we represent a document as the vector d =
(tf1,...tfi,...,tfyy) where V if the size of the vocabulary. We represent a query
having n clauses as a nxV matrix of weights: C' = (¢;;) where ¢;;is the weight of
jth term in ith clause. The projected document is then d|¢ :=d x CT .
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Consider this example. Imagine that we are given a corpus with four terms
[Doc[A[B[C[D]
2110

AD: | % 1
d2 01|11

ds [1]2|0]2
Now consider the query with two clauses:

q:={{(4,1.0), (B,0.0)}, {(C,1.0)} }

This query can also be represented by the matrix:

1.700
¢i= [0010}

In the projection d|¢ := dx CT the original query terms are removed from the
collection and replaced with new pseudo-terms representing the clauses; other
terms are removed because all terms are included in the clauses. The term fre-
quency of the clause pseudo-term will be equal to the weighted sum of term
frequencies of the terms in the clause. In our example:

lTransformed Doc [ Clausel [ Clause2 ‘

dilq 2.7 0
da|, 0.7 1
ds|, 2.4 0

This projection will be different for every clause, so it cannot be done as a
pre-processing step: it must be done online. In practice one can carry out this
transformation very efficiently since the projection is performed only on the
few terms contained in the query, and document vectors are very sparse. Most
important, the information needed for this projection is contained in the postings
of the query terms. This means that one can compute the needed term statistics
on the fly after postings are returned from the inverted index. This will incur
the cost of a few extra flops per document score, but without any extra disk or
Memory access.

The length of the document is not modified by the projection, nor the av-
erage document length. The clause term frequencies (ctf) and clause collection
frequencies (ccf) can be computed as:

ctf(d,c) := Z w-tf(d,t)

(tyw)ec
cef(die):= ) w-y tf(dt)
(t,w)ec d
o ctf(d,c)
pui(cld) == ctf(d,c) + Y g tf(d,t)
pmL(c|Col) = cef(d, c)

ccf(d, C) + Zd,téc tf(dv t)



Exploiting morphological query structure using Genetic Optimisation 5

The most problematic statistic is the inverse clause frequency (icf), since this
is not clearly defined in the weighted case. One possible choice is the number
of postings containing at least one term in the clause; we refer this as icfor(c),
and we note that it can be computed directly from the size of the clause result
set (documents with non-zero ctf). However, this number may be unfairly large
for clauses with lowly weighted common terms. Furthermore, in some settings
this number may not even be available (for example if we only score the query
term AND set or if we drop from the computation documents unlikely to be
highly scored). Another possibility is to use the ezpected idf for a clause term in
a document:

icfe(d, c) = m (t%:ecw LF(d ) - idf (t) (3)

In our empirical evaluation we found this is better than using the min or the
mazx clause idf, and better than using the mean idf.

With these statistics at hand we can compute the relevance score of a docu-
ment with respect to a query with clauses for a number of retrieval systems[2];
we display several in Table 1.

Table 1. Implementing query clauses in several standard ranking models.

| MODEL | WEIGHTING |
BM25 e el
VM e
lq
DFR (PL2)| 777 (ctf - log, L + (A — ctf) -logy e + 0.5 - log, (27 - ct f))
LM (KL) psmoothed(c‘q) log (psmoothed (C|d))

3 Query Clause Experiments

We have performed experiments to demonstrate the dangers of the term inde-
pendence assumption for queries with strongly correlated terms, and to test the
proposed query-clauses ranking idea applied to the stemming problem. Evalu-
ation has been carried out on the Spanish EFE94 corpus which is part of the
CLEF collection [10] (approximately 215K documents of 330 average word length
and 352K unique index terms) and the 2001 Spanish topic set, with 49 topics of
which we only used the title (of 3.3 average word length). All runs employ the
standard (equation 1) and the query clause version of BM25 Table 1.



6 Hugo Zaragoza, Lourdes Araujo, Jose R. Pérez-Agiiera

3.1 Stemming

One can view stemming as a form of global query expansion: we expand a term
in the query with every term in the dictionary sharing the same stem. However,
doing this directly on the query greatly hurts performance (Table 2, rows 1 and
2) . One may think that this loss of performance is due to the noise introduced
by the stemming algorithm, but this is not the case: if we replace terms by their
stemmed version in the collection and in the query, performance will most often
increase and rarely decrease (Table 2 row 3 ). This is another case of performance
being degraded by adding information to the query. In our opinion, this is due
to the strong violation of the term independence hypothesis produced by adding
so many strongly correlated terms to the query.

A natural way to expand a query by stemming is to construct a set of sets of
terms, or a set of clauses, where each clause represents all the forms of a stem,
possibly weighted (since we may want to weight more strongly the original term
typed by the user). The resulting query is a set of sets of clauses which can be
ranked with our proposed method. Its performance, using as idf the clause’s
(icfor) is exactly equivalent to stemming the collection since in both cases term
frequencies of stems are collapsed (this is also seen empirically in Table 2, last
row)

Table 2. Stemming Performance

l Method: HAvg.Prec[PredO[
No Stemming 37 A7
Stem Expansion (Standard) .20 .28
Stemming .43 .52
Stem Expansion (Clauses) .43 .52

3.2 Our Genetic Algorithm

Because we need to perform the selection of a particular set of terms among
a huge amount of possible combinations of candidate query terms, the com-
putational complexity of exhaustive search methods is non-viable and we have
resorted to a heuristic method such as a genetic algorithm.

Genetic algorithms [7] have been shown to be practical optimization meth-
ods in very different areas [9]. Evolutionary algorithms mimic the principles of
natural evolution: heredity and survival of the most fit individuals.

A genetic algorithm maintains a population of potential solutions, and is pro-
vided with some selection process based on fitness of individuals. The population
is renewed by replacing individuals with those obtained by applying “genetic”
operators to selected individuals. The usual “genetic” operators are crossover
and mutation. Crossover obtains new individuals by mixing, in some problem
dependent way, two individuals, called parents. Mutation gives a new individual
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by performing some kind of change on an individual. The production of new
generations continues until resources are exhausted or until some individual in
the population is fit enough. Figure 1 shows the structure of a genetic algorithm.
The algorithm works with a collection of individuals {z;,- - -, 2, }, called popula-
tion. Each individual represents a potential solution to the problem considered,
implemented as some data structure, which depends on the problem. The evalu-
ation of each solution gives a measure of its fitness. At a new generation step, a
new population is formed by selecting the more fit individuals. Some members of
the new population suffer transformations as a consequence of applying genetic
operator to form new solutions. After a number of generations, the program is
expected to converge, and it is hoped that then, the best individual represents
a solution close to the optimum.

evolution program
begin
generation = 0
P = initialize_population
F = evaluation(P)
while not required_fitness(F) and
not termination_condition do
begin
generation = generation + 1
I = individuals_selection(P, F') %for genetic operators
P = new_generation(P, I)
F = evaluation(P)
end
end

Fig. 1. Structure of a genetic algorithm

Chromosomes of our GA are fix-length binary strings where each position
corresponds to a candidate query term. A position with value one indicates that
the corresponding term is present in the query. Because some preliminary ex-
periments we have performed have shown that, in most cases, the elimination of
the original query terms degrades the retrieval performance, we force to main-
tain them among the selected terms of every individual. The set of candidate
terms is composed of the original query terms, along with related terms pro-
vided by the applied thesaurus. Each term of the original query is grouped with
the expanded terms related to it, and this set (term_set) [11] is submitted as
an individual query. The weights assigned to the documents retrieved with each
term_set are used to sort the total set of retrieved documents.

The applied selection mechanism has been roulette wheel. In roulette wheel
selection, the chances of an individual to be chosen for reproduction are pro-
portional to its fitness. We apply the one-point crossover operator and random
mutation [6,7,9]. In one-point crossover a single crossover point is chosen on
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both parents strings. The parts of the parent strings divided by the crossover
point are swapped to generate two children, containing a part of each parent.
The random mutation operator simply flips the value of a randomly chosen bit
(0 goes to 1 and 1 goes to 0). We also apply elitism, the technique of retaining
in the population the best individuals found so far. The fitness function used
is some measure of the degree of similarity between a document belonging to
the system and the submitted query. We will discuss this further in the different
experiments.

4 Experimental results

The system has been implemented in Java, using the JGAP library!, that pro-
vides a generic implementation of a genetic algorithm, on a Pentium 4 processor.

We have carried out experiments to evaluate the fitness functions considered.
We have investigated the best range of the GA parameters. Finally, we provide
global measures for the whole set of queries that we have considered.

4.1 Selecting the Fitness Function

25

12
—cos "X

cos X
2
~~ cos X

L | L L L
40 60 80 100
Generation

Fig. 2. Fitness functions comparison for the best_query, the one for which the greatest
precision improvement is achieved.

In the begining, we would like to use Average precision as the fitness function.
However, this is not known at query time. Instead, it has been suggested in
previous work to use the document scores as the fitness[8]. While this may not
be intuitive, it turns out that variations of these scores after expansion are
correlated with relevance[1]. One intuitive explanation would be that adding an
unrelated term to a query will not bring in new document with high scores, since
it is unlikely that it will retrieve new documents; on the other hand adding a

! http://jgap.sourceforge.net/



Exploiting morphological query structure using Genetic Optimisation 9

term that is strongly related to the query will bring new documents that also
contain the rest of the terms of the query and therefore it will obtain high scores.

We have considered three alternative fitness functions, v/cosf, cosf and
cos? §. To select the fitness function to be used in the remaining experiments,
we have studied the fitness evolution for different queries of our test set. Fig-
ure 2 compares the fitness evolution for the query which reaches the greatest
improvement (best_query). The three functions converge to different numerical
values that correspond to the same precision value (.68). We can observe that
the square-root cosine function if the first one to converge. A similar behavior
is observed in other queries. Accordingly, the square-root cosine has been the
fitness function used in the remaining experiments.

4.2 Tuning the GA Parameters

The next step has been tuning the parameters of the GA. Figure 3 shows the
fitness evolution using different crossover (a) and mutation (b) rates for the
best query. Results show that we can reach a quickly convergence with values of
the crossover rate around 25%. Mutation rates values around 1% are enough to
produce a quick convergence.

1,21 il
1 e
| i b
[
[
[
ﬁ 1 ] |
L i i
s L %X =10
1R i : %X =20 -
I 0, =
o8- i Tl o = 3
O A %X =20 b %X = 50
5 -- %X =25 _
L - %X =30
7
0.6£ L L L L L L L L L 0.3 L L L L L L L L L
0 20 40 60 80 100 ~0 20 40 60 80 100
Generation Generation

Fig. 3. Studying the best crossover (a) and mutation (b) rates for the best_query.

Figure 4 show the fitness evolution for the best (a) and the worst (b) queries,
with different population sizes. The plots indicate that small population sizes,
such as one of 100 individuals, are enough to reach convergence very quickly.

4.3 Overall Performance

Table 3 (Stem Expansion (Clauses)) shows the results obtained using stemming
as query expansion but building a clause for every term. As expected, the results
are exactly those obtained in traditionally stemming by collapsing terms to their
stems.
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Fig. 4. Studying the population size for the best_query (a) and the worst one (b).

In order to show the improvement of our approach, we have compared the
genetic algorithm performance with the results of the original user query (Base-
line) and with the results obtained expanding with the stems provided by the
Porter stemming (Porter Stemming). We can observe in Table 3 (Genetic Expan-
sion (Clauses)) that the combination of clauses and genetic algorithm achieved
an improvement of the performance, greater than the one achieved with other
stemming methods traditionally used in the stemming process, such as Porter.

Table 3. Stemming Performance

l Method: HAngrec‘PreclO‘ Rel.A ‘
No Stemming .37 A7 1-13.9%
Stemming (Baseline) .43 .52 0*
Stem Expansion .20 28 |-53.5%
Stem Expansion (Clauses) .43 .52 0
Genetic Expansion .39 49 |-9.4%
Genetic Expansion (Clauses)|| .45 .53 |+4.4%

5 Related works

In most query expansion literature terms are selected (globally from the entire
corpus or locally from the top retrieved documents), weighted with respect to
their potential relevance and then passed on to a standard retrieval system,
which is considered a black box. Here we are concerned only with this black box
and not with the expansion process; for this reason we will not review the query
expansion literature (an up to date overview can be found in [5]). Some work
on user and pseudo-feedback has tackled the issue of term re-weighting, from
early Rochio algorithms to more modern probabilistic approaches of relevance
feedback. While these works discuss the ranking function, to our knowledge
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they all assume Query Term Independence and concentrate on the re-weighting
formula. Again, we are not concerned here on the re-weighting of terms (this
is left unspecified in our work), and therefore we do not review this literature
further (see for example [4]).

A few papers have dealt with the issue of term correlation and its effect on
retrieval. In [14] the problem of correlation is discussed in depth. They remark
that term correlation is only an abstract concept and can be understood in a
number of ways. They measure term correlation in terms of term co-occurrence.
Furthermore they propose to represent documents not in the space of terms but
in the space of minterms which are sets of highly correlated terms. This has the
effect of decorrelating the terms in the query with respect to hypothetical con-
cepts (formally defined as minterms). Instead of computing all term correlations,
[13] proposes to mine association rules to compute the most significant term cor-
relations and the rotates the term vectors to reflect the extracted correlations;
this yields a more selective term de-correlation. [11] also proposes mining associ-
ation rules to find term sets of correlated terms. However, the ranking function
adjustment proposed is based on the same idea of this paper: collapsing term
frequencies within a clause. In fact, if we disregard relative weights, we use the
VSM model, and we construct query clauses using association rules in [11], the
ranking function here is exactly the same as in [11]. However our work differs
from the previously cited papers in that it is not tied to an extraction method
or a ranking model, it does not specify the form of the term correlations and
furthermore it assumes that term correlations will be query-dependant.

6 Conclusions and future work

In this paper we try to show the importance of term dependence issues, how they
show up unexpectedly in simple experiments and how they can have a strong
adverse effect in performance. Furthermore we propose a method to represent
and take into account a simple form of dependence between terms.

On the other hand, we have shown how the clauses can be combined with an
evolutionary algorithm to help to reformulate a user query to improve the results
of the corresponding search. Our method does not require any user supervision.
Specifically, we have obtained the candidate terms to reformulate the query
from a morphological thesaurus, with provides, after applying stemming, the
different forms (plural and grammatical declinations) that a word can adopt. The
evolutionary algorithm is in charge of selecting the appropriate combination of
terms for the new claused query. To do this, the algorithm uses as fitness function
a measure of the proximity between the query terms selected in the considered
individual and the top ranked documents retrieved with these terms.

We have investigated different proximity measures as fitness functions with-
out user supervision, such as cosine, square cosine, and square-root cosine. We
have also studied the GA parameters, and see that small values such as a pop-
ulation size of 100 individuals, a crossover rate of 25% and a mutation rate of
1%, are enough to reach convergence. Measures on the whole test set of queries
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have revealed a clear improvement of the performance, both over the baseline,
and over other stemming expansion methods.

A study of the queries resulting after the reformulation has shown that in
many cases the GA is able to add terms which improve the system performance,
and in some cases in which the query expansion worsen the results, the GA is
able to recover the original query.

For the future, we plan to investigate the use of other sources of candidate
terms to generate the claused queries applying different query expansion ap-
proaches like co-occurrence measures or methods based in Information Theory.
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