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Abstract

We have developed a heuristic method for unsupervised parsing of unrestricted text. Our

method relies on detecting certain patterns of part-of-speech tag sequences of words in

sentences. This detection is based on statistical data obtained from the corpus and allows us

to classify part-of-speech tags into classes that play specific roles in the parse trees. These

classes are then used to construct the parse tree of new sentences via a set of deterministic

rules. Aiming to asses the viability of the method on different languages, we have tested it

on English, Spanish, Italian, Hebrew, German, and Chinese. We have obtained a significant

improvement over other unsupervised approaches for some languages, including English, and

provided, as far as we know, the first results of this kind for others.

1 Introduction

A grammar induction algorithm must infer sentence structures. If the algorithm is

unsupervised, this structure can be discovered by identifying patterns that occur at

a higher frequency than pure chance would explain (e.g., by randomly shuffling the

texts). A common procedure in unsupervised grammar induction (UGI) (Klein and

Manning 2005; Bod 2006; Bod 2007) is to start off from the part-of-speech (PoS)

tag sequences assigned to the words in the texts to be parsed. This amounts to

preprocessing the texts for PoS tagging – something that can be achieved either in a

supervised (achieving approximately 97% accuracy) or, if necessary, an unsupervised

manner. We follow the same scheme in this work, so the goal of our method will

be to identify statistical patterns of PoS tags that provide us with sufficient clues to

infer, to a certain extent, the shape of parse trees.

Parse trees are made of constituents. Each node in the parse tree corresponds to a

constituent. The tree leaves identify the PoS tags. Thus, constructing the parse tree of

a sentence is equivalent to identifying all its constituents. Constituents corresponding

to nodes from which only leaves hang define a class that plays a special role in our

algorithm. Accordingly, we will refer to them as base constituents throughout this

paper.

Our proposal for unsupervised grammar induction is heuristic. It relies upon a

few empirical observations about particular patterns in parse trees which help in

the task of identifying constituents. For instance., most sentences exhibit a parse
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Fig. 1. Parse tree for the sentence Esso said the Whiting field started production Tuesday from

the Penn Treebank.

Fig. 2. Parse tree for the sentence In September, she pleaded guilty and paid a $ 500 fine from

the Penn Treebank.

tree that splits off at the root into two main branches. Also, PoS tag patterns

corresponding to constituents occur in texts at a frequency higher than they would

do in a random sequence of PoS tags. Certain lexical categories of words (which

depend on the language we are parsing) appear much more frequently than others

at the beginning or at end of the base constituents. Other lexical categories often

appear in specific patterns. For instance, two common patterns are E C1 (or C1 E,

depending on the language) or C1 E C2, where E stands for a PoS tag and C1 and

C2 for two constituents. The PoS tags E involved in these patterns will prove key to

inferring the parse tree.

In order to flesh out these observations, consider the example trees shown in

Figures 1–3, extracted from the Wall Street Journal (WSJ) section of the Penn

Fig. 3. Parse tree for the sentence Scoring High and Learning Materials are the best-selling

preparation tests from the Penn Treebank.
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Treebank (Tables 11 and 12 in Appendix A lists the PoS tags used to annotate

this corpus and the internal tags appearing in the examples, respectively. We can

observe that the pattern DT · · · NN*1 appears in all three examples. The fact that

this pattern occurs at an unusually high frequency in the corpus suggests that it

may identify a constituent. Another important observation is that some PoS tags

often appear inside these constituents – e.g., JJ* tends to appear between DT and

NN* (see Figure 3). Also noticeable is the fact that certain PoS tags tend to divide

the sentence into two main parts – e.g., VBD in Figure 1, and VBP in Figure 3.

Moreover, some PoS tags – frequently including those that divide sentences – play

the role of tag E in constituents with the pattern E C1. This is the case for VBD in

Figure 1 – which appears twice: in the first occurrence it precedes the sequence DT

NNP NN VBD NN NNP, and in the second occurrence, the sequence NN NNP, for PRP

and VBD in Figure 2, and for VBP in Figure 3. Finally, tags such as CC in Figure 3

are the E in the pattern C1 E C2.

Our approach is based on an iterative procedure. We first detect some constituents

by statistical analysis and then use this information to identify PoS tags that are

typically found in the kinds of common patterns mentioned above. This in turn

helps us detect the remainder constituents. In order to test this procedure, we have

applied it to different corpora annotated with PoS tags. More precisely, and for

the sake of comparison, we have adopted the Klein and Manning (2005) evaluation

setting for the problem, as well as those of Bod’s (2006, 2007) approach. As far as we

know, these or some of their extensions using the same experimental setting, provide

the best results obtained so far for unsupervised grammar induction for constituent

grammars using a monolingual corpus and PoS-tagged corpora. As in these two

cases, the grammar we obtain does not specify the left-hand side of the rules, only the

shape of the tree (i.e., the PoS tag sequences defining constituents). Also similar to

them, we have used the Penn Treebank (Marcus, Santorini and Marcinkiewicz 1994)

as one of our test corpora, employing the syntactic annotations that it provides only

for evaluation purposes.

An important remark is that similar patterns are common to many languages.

This means that our approach should (to a large extent) be able to parse sentences

irrespective of the language. Accordingly, we have tested our model with different

languages belonging to different families and showing different degrees of freedom

in word order – namely English, German, Spanish, Italian, Chinese, and Hebrew.

The results obtained for all of these are surprisingly good, given the simplicity of

the approach, and suggest that searching for statistical patterns may be a powerful

tool to infer grammars when little is known about the underlying language.

The rest of the paper is organized as follows. In Section 2, we review some

current approaches to unsupervised grammar induction. In Section 3, we propose

our approach based on PoS tag patterns to identify PoS tag classes, which will later

allow us to parse sentences. In Section 4, we provide the procedure for constructing

a parse tree, given the PoS tag classes appearing in the sentence. In Section 5, we

1 XX* stands for any tag comprising XX and any sequence of letters (including the empty
string); e.g., NN* can be replaced by any noun (NN, NNP, NNS, NNPS).
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report and discuss the results obtained for different languages and compare them

to those obtained with other systems. Finally, we put our approach in context and

provide directions for future work in Section 6.

2 Related works

The aim of grammar inference is to learn a grammar to model the structure of the

sentences of a language. There are two main approaches to this task: supervised

and unsupervised. In supervised grammar induction, the grammar and the parsing

model are obtained from a treebank of syntactically annotated sentences. There are

quite a few works following this approach. In recent works (Petrov 2010), the level

of performance has been risen up to 91.8%.

Our work deals with unsupervised empirical grammar induction, though, so we

will mainly focus on the work made within this category. An interesting system has

been proposed by Carroll and Charniak (1992), who use the Inside-Outside (IO)

algorithm to improve the initially calculated estimates of the probabilities of rules,

rejecting those with a probability below a small threshold. The authors investigated

the reasons for the limited quality of the results achieved and noted that the grammar

obtained was very sensitive to the initial estimates for probabilities.

Stolke and Omohundro (1994) induced a grammar by incorporating samples as

ad hoc rules to a working grammar. Subsequently, elements of the model are merged

to achieve generalization and a more compact representation. The choice of what

to merge and when to stop is governed by the Bayesian posterior probability of

the grammar given the data. The authors conclude that the method requires some

refinements to be successfully applied to natural language grammars.

Clark (2000) proposes an algorithm to learn a phrase-structure grammar from

tagged text. It clusters sequences of tags together based on local distributional

information, and selects clusters that satisfy a mutual information criterion. Sets

of tag sequences can be clustered together based on the contexts they appear in.

Results show that this criterion selects linguistically plausible constituents.

Klein and Manning (2005) borrow the main ideas from Carroll and Charniak’s

(1992) work creating a model called Constituent-Context Model (CCM). The model

is intended to be applied to PoS tagged texts without considering punctuation marks,

and uses the Expectation-Maximization (EM) algorithm to maximize the likelihood

of contiguous subsequences of PoS tags. The system has been tested on English,

German, and Chinese Treebanks, but only for sentences of up to ten words. The

model relies on the idea that long constituents usually have short equivalents in the

same contexts, an idea that is also a cornerstone in our proposal. The system achieves

an F-measure of 71.1% for English, 64.2% for German, and 36.8% for Chinese.

Recently, Golland, DeNero and Uszkoreit (2012) have proposed Log-Linear CCM

(LLCCM), a log-linear variant of CCM, which aims to avoid a drastic drop in

performance for long sentences.

An alternative system for unsupervised parsing is Bod’s (2006) Unsupervised Data-

Oriented Parsing (U-DOP). Bod (2006) points out that Klein and Manning’s (2005)
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approach neglects dependencies that are non-contiguous by using an ‘all-substrings’

approach. U-DOP directly models structural as well as lexical context without

constraining any dependencies beforehand. Subtrees can model both contiguous

and non-contiguous lexical dependencies. Accordingly to Bod (2006), this all-subtrees

approach is a generalization of Klein and Manning’s (2005) all-substrings approach.

Bod’s system (2006) achieves an F-measure of 82.9% for the English corpus WSJ10

used by Klein and Manning (2005). Since it generates a large amount of subtrees

for each phrase, the system becomes impractical for longer sentences. As a result,

Bod (2007) describes a method that generates far fewer subtrees for each phrase,

but at the cost of lowering the performance. This new method achieves 77.9% on

the WSJ10 corpus.

Other related works are those of Magerman and Marcus (1990) and van Zaanen

(2000). These works aim to learn a representation of the constituent boundaries of

the language. The work by Magerman and Marcus (1990) uses mutual information

statistics, while the work by van Zaanen (2000) is based on the alignment of sentences

sharing some part.

Seginer (2007a) has proposed an unsupervised parser from plain text which uses

a local, greedy parsing algorithm. The parser is incremental and uses a new link

representation for the syntactic structure. This representation allows a prefix of an

utterance to be parsed before the full utterance has been read. This parser improves

on previously published results for unsupervised parsing from plain text, achieving

an F-measure of 75.9% for the English corpus WSJ10.

Recently, Spitkovsky, Alshawi and Jurafsky (2011) have achieved significant

improvement over their base model for unsupervised dependency parsing by taking

the advantage of punctuation marks and capitalization (Spitkovsky et al. 2012).

These results have been taken into account in the design of our method for

constituent parsing.

The approach we propose in this work differs in many aspects from the above-

described works. To begin with, our algorithm is not constrained to generate binary

trees. Furthermore, our method does not rely on any machine learning algorithm,

but on a number of heuristics that allow us to extract general patterns present in

many languages. Preliminary results of this approach were presented in Santamarı́a

and Araujo (2010), showing the potential of the method in a restricted version which

only uses two of the PoS tag classes that are identified by their role in the patterns

(namely, separators and delimiters; see below). Clark’s (2000) idea of contexts is

close to our idea of separators, and plays a similar role, although these are identified

in a different manner. Besides, the clusters of PoS tag sequences determined by a

particular context are also somehow related to our idea of delimiter, since they

represent the set of PoS tag sequences with the same limits. The current work

extends that initial procedure by adding new PoS tag classes (such as those prone

to divide sentences into two main parts, and joiners, a particular kind of separators

linking two similar sub-structures). We have also enlarged the model by considering

punctuation marks. Finally, we have evaluated the model for different languages in

order to assess its generality.
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3 The PoS tag pattern method for unsupervised parsing

We have used the empirical observations described in the Introduction to elaborate

a deterministic procedure to parse sentences of a PoS-tagged text. The procedure

is implemented in two algorithms: In the first one a few sets of tags are identified

according to their role in different patterns; in the second one these tags are used

to produce parse trees. In this section, we will describe how to construct the first

algorithm (the pseudocode of which appears in Figure 4). The second algorithm is

described in Section 4.

There are four relevant classes that we need to identify: delimiters, separators,

joiners, and punctuation marks. Delimiters and separators are mutually exclusive.

Joiners are a subset of separators, and, of course, punctuation marks do not overlap

any other class. This classification is not exhaustive. There remain tags that play no

special role.

We call delimiter any PoS tag occupying the first or last position of a base

constituent. For instance, DT and NN in Figures 1 and 2, and DT and NNS in

Figure 3, are delimiters.

A separator is any PoS tag T which appears in patterns of the form T C1 or C1 T ,

with C1 any constituent. Tags such as VBD in Figure 1 (in its two appearances),

PRP and VBD in Figure 2, or VBP in Figure 3, are examples of separators. If the

separator plays the role of the head of the sentence (i.e., splits the sentence into two

main parts), we refer to it as predominant separator; e.g., VBD in Figure 1 or VBP

in Figure 3 are predominant separators.

A joiner is any PoS tag T which appears in patterns of the form C1 T C2, with

C1 and C2 two arbitrary constituents. A joiner in the trees given in Figures 2 and 3

is CC.

Finally, we interpret any character other than alphanumeric characters as punctu-

ation marks. Its identification is therefore a trivial matter.

The problem we face now is to identify tags that are likely to play the role of

delimiters, separators, and joiners in the texts to be parsed.

The cornerstone of our method is to identify at least one sequence of PoS tags that

forms a constituent with high probability. We achieve this by looking throughout

the corpus for the most frequent pair of PoS tags, Lsc Rsc, to which we refer as the

safe constituent (sc). This automatically identifies Lsc and Rsc as two delimiters. This

empirical assumption is based on the observation that in all corpora that we have

examined, the most common sequence of length two is a noun phrase.

According to Klein and Manning (2005), long constituents often have short,

common equivalents that appear in similar contexts. It is thus reasonable to assume

that occurrences of these in the corpus correspond to constituents fitting the pattern

Lsc · · ·Rsc. Certainly not all of them, but our guess is that this happens more often

than not. Under this hypothesis we can identify separators and new delimiters in

relation to their occurrences relative to these two delimiters.

Actually, following Cohen and Smith (2009) we make a small refinement which

improves performance: We extend the definition of sc by generalizing its pair of

PoS tags to the pair of coarse-grained PoS tag categories which they belong to. For
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1 (Lsc, Rsc)← most freq. sequence of two PoS tags in the corpus
2 sc← (Lsc, Rsc) // safe constituent
3 S← ∅, D← {Lsc, Rsc}, O← ∅, J← ∅, P← ∅, DP← ∅;
4 // Identify separators (S), delimiters (D). The remaining tags are classified as other(O)
5 for each E ∈ T do
6 if |#(E, Lsc) − #(Lsc, E)| ≥ |#(E, Rsc) − #(Rsc, E)| // Lsc: determining side
7 if 3/4 ≤ #(E, Lsc)/#(Lsc E) ≤ 4/3 then //#(E, Lsc) and#(Lsc E) are similar
8 D ← E // delimiter
9 else if (#(E, Lsc) > #(Lsc, E)) then // E tends to appear on the left of Lsc

10 S ← E // separator
11 else O ← E // other: E tends to appear on the right of Lsc

12 else //Rsc: determining side
13 if 3/4 ≤ #(E, Rsc)/#(Rsc E) ≤ 4/3 then //#(E, Rsc) and#(Rsc E) are similar
14 D ← E // delimiter
15 else if (#(Rsc, E) > #(E, Rsc)) then // E tends to appear on the right of Rsc

16 S ← E // separator
17 else O ← E // other: E tends to appear on the left of Rsc

18 for each E ∈ D do // Identify the preferred direction for the delimiters
19 X: most freq. tag to the left of E, Y : most freq. tag to the right
20 if#(X, E) > #(E, Y ) then preference direction(E)← right
21 else preference direction(E)← left
22 // predominant separator category (SC pred)
23 // separator category sec: PoS tags in S sharing the same prefix
24 SC pred ← {sec : #sec ≥ N}
25 // separator hierarchy
26 for each E ∈ SC pred do // can be generalized if there are more levels
27 if ( | log10(#(sc, E)/#(sc, max))| > 1) then // same order of magnitude
28 first level ← E
29 else second level ← E
30 // Identify partners
31 for each E ∈ SC pred do
32 Partners ← most frequent PoS tagX preceding E
33 Partners ← remove from Partners tags appearing before (but not

ecnetnesafodaeheht)otsuougitnoc43
35 //Identify joiners (J)
36 for each Ei ∈ S do
37 total counter← #different sequences EjEiEk with Ej , Ek ∈ T
38 for each Ej ∈ S do
39 if the most frequent sequence EjEiEk has Ej = Ek then
40 joiner counter← joiner counter + 1
41 if (joiner counter ≥ total counter / 2 then J ← Ei

42 //Identify punctuation marks(P) and double punctuation marks(DP)
43 DP← ∅
44 P← PoS tags of words not made of letters and numbers
45 for each E ∈ P do
46 for each E ∈ P do
47 if#sentences with E ≈ #sentences with E then DP← (E, E )

Fig. 4. Algorithm for the induction of PoS tag classes. The separator category sec is a set of

PoS tags of T beginning with the same letters, if any, or a single separator otherwise. N is

the number of sentences in the corpus. sec are the PoS tags in S(separators) sharing the same

prefix. This optimization is only applied to those sets in which the PoS tags of each category

share the first letter. max is the PoS tag from SC pred appearing most often immediately

following the safe constituent sc.

instance, (DT, NN) is usually found to be the most frequent pair of PoS tags in

English corpora; thus, sc is generalized to (DT, NN*), i.e., a determiner and any

noun. We only do this when the corpus annotations identify the PoS tag categories

by assigning (as in this example) the same initial letters to all PoS tags belonging to

it (most corpora use this convention). Otherwise we stick to the found pair of most

frequent PoS tags.
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3.1 Detecting separators and delimiters

Given a PoS tag E, we look for all occurrences of the two pairs E Lsc and Lsc E

(likewise E Rsc and Rsc E). Either there is a bias toward one of the two pairs or

there is no bias. If E Lsc (likewise Rsc E) appears significantly more often, then we

classify E as a separator. If the difference is not significant then we classify E as a

delimiter. The rationale for this is as follows. Arguably, most occurrences of Lsc and

Rsc in the text will correspond to a constituent of the form Lsc . . . Rsc. Hence, if E Lsc

(respectively Rsc E) appears significantly more often than Lsc E (respectively E Rsc),

this means that E tends to form the pattern E C (with C = Lsc . . . Rsc) that identifies

a separator. Delimiters, on the other hand, can be found at any side of Lsc or Rsc

because base constituents may be a part of or adjacent to another constituent. So if

both sequences, E Lsc and Lsc E (respectively Rsc E and E Rsc), appear a comparable

number of times, then it is likely that E is a delimiter.

Most delimiters in English corpora are either determiners (DT) or nouns (NN*),

so the sc almost exhausts the delimiter class. There are a few others, though,

such as possessive ending (POS). As a matter of illustration, POS is often found

in the Penn Treebank ending a base constituent, e.g., (NP (NN today) (POS’s)),

but sometimes this constituent precedes a noun, e.g., ((NP (NP (DT the) (NNS

funds) (POS’) ) (NNS investments)), therefore neither pattern, POS NN* nor NN*

POS, is expected to show up more often than the other. This identifies POS as a

delimiter.

More formally, the precise procedure we have implemented to assess whether a

PoS tag E is a separator or a delimiter is the following. For a given PoS tag E we

compute2 #(E Lsc), #(Lsc E), #(E Rsc), and #(Rsc E). We refer to E Lsc and Rsc E as

the outer pairs, and Lsc E and E Rsc as the inner pairs – implying that Lsc and Rsc

are, respectively, the left and right ends of a constituent. We define the determining

side of E (denoted ds(E)) as the tag, Lsc or Rsc, showing the largest difference in the

number of occurrences between its inner and outer pairs. Finally, the similarity is

analyzed by checking whether the ratio

rt = #(outer pair of ds(E))/#(inner pair of ds(E))

is sufficiently close to unity (more precisely in the interval (3/4, 4/3)).

Now, if 3/4 < rt < 4/3, then we consider that the ‘inner-outer bias’ is not

significant (less than 3:4) and thus classify E as a delimiter. If 4/3 < rt, then the

bias toward the outer pair is considered significant and we classify E as a separator.

Finally, if rt < 3/4, the bias toward the inner pair is significant, meaning that E is

just a part of the constituent.

We have checked thresholds as large as 1:2 finding that the results are little

affected or not at all regardless of the corpus or the language. Therefore, even

though the choice 3:4 looks arbitrary, its precise value is not very relevant. This

probably means that whenever there is a bias, it is strong.

2 #(E1 · · ·En) stands for the number of occurrences of the PoS tag sequence (E1 · · ·En).
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Table 1. Separators and delimiters obtained for the WSJ corpus. Others correspond
to the remaining PoS tags, excluding punctuation marks

Separators Delimiters Others

MD, PRP, IN, RB, RBR, DT, PDT, POS, SYM, NN, CD, FW, JJ, JJR, JJS,

CC, TO, VB, VBD, VBN, NNS, NNP, NNPS LS, PP$, RBS, WP$,

VBZ, VBP, VBG, EX, LS, PRP$

RP, UH, WP, WRB, WDT

In the algorithm (Figure 4) we study the similarity by checking the rt ratio

corresponding to each case. We introduce the predicate

sim(E1, E2) = true iff #(E1 E2)/#(E2 E1) ∈ [3/4, 4/3]

which is true if the difference in the number of occurrences of the PoS tag pairs

E1 E2 and E2 E1 is not significant. A tag E is then considered a separator if the

predicate

sep(Lsc, E, Rsc) = ((ds(E) = Lsc) ∧ (¬sim(E,Lsc) ∧ #(E,Lsc) > #(Lsc, E)))

∨((ds(E) = Rsc) ∧ (¬sim(E,Rsc) ∧ #(Rsc, E) > #(E,Rsc)))

is true, i.e., if the determining side is Lsc, the number of occurrences on both sides

of this boundary is not similar, and E appears more often to the left than to the

right of Lsc, or if the determining side is Rsc, the number of occurrences on both

sides of this boundary is not similar, and E appears more often to the right than to

the left of Rsc.

On the other hand, E is considered a delimiter if the predicate

delim(Lsc, E, Rsc) = ((ds(E) = Lsc) ∧ sim(E,Lsc)) ∨ ((ds(E) = Rsc) ∧ sim(E,Rsc))

is true, i.e., if the determining side is Lsc and the number of occurrences of E on

both sides of Lsc is similar, or if the determining side is Rsc and the number of

occurrences of E on both sides of Rsc is similar.

Repeating this procedure with every PoS tag we have obtained the sets of

separators and delimiters for WSJ. They are shown in Table 1. In this case,

determiners and nouns are classified as delimiters, and prepositions and verbs

are classified as separators. Although this is common to most tested corpora, we

have found some differences. For instance, some verbs (VAIMP, VMINF, VMPP)

are classified as delimiters in the German corpus NEGRA. On the other hand, other

PoS tags are more heterogeneous; e.g., adverbs are in the separator class in the

Penn Treebank, but appear distributed between the two classes in the Spanish UAM

Treebank.

Delimiters can be either right or left delimiters. Left delimiters tend to appear

at the first position, whereas right delimiters tend to appear at the last position.

To determine the type of delimiter L, we find a tag E such that EL is the most

frequent combination and a tag E ′ such that LE ′ is the most frequent combination.

If #(EL) > #(LE ′), then L is a right delimiter; otherwise it is a left delimiter. Table 2
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Table 2. Preferred direction in which each delimiter clusters in WSJ10. The first
column corresponds to the delimiter, the second column to the most frequent sequence
comprising the delimiter and a tag on its right, the third column to the frequency of
this sequence, the fourth column to the most frequent sequence of the delimiter and a
tag on its left, the fifth column to its corresponding frequency, and the last column to
the resulting direction. For NNP, for which the frequency of the most frequent tag to
the right and to the left are the same, we have searched for the second most frequent
sequence to choose the grouping direction: (NNP VBZ)(454) and (IN NNP)(540).
Accordingly, the direction of preference for NNP is the right

Delimiter Most freq. left Freq. Most freq. right Freq. D

DT (DT, NN) 2222 (IN, DT) 894 L

PDT (PDT, DT) 28 (NN, PDT) 14 L

POS (POS, NN) 169 (NNP, POS) 223 R

SYM (SYM, IN) 11 (NN, SYM) 4 L

NN (NN, IN) 892 (DT, NN) 2,222 R

NNS (NNS, VBP) 591 (JJ, NNS) 797 R

NNP (NNP, NNP) 2127 (NNP, NNP) 2,127 R

NNPS (NNPS, NNP) 42 (NNP, NNPS) 82 R

shows the results obtained for WSJ10, the type of the delimiter appearing in the last

column.

The process to identify delimiters and separators appears at the beginning of the

induction algorithm in Figure 4 (lines 4–21).

3.2 Identifying the main parts in sentences

In general, the head of the sentence is a separator because in most cases it triggers

new levels of the tree. A sentence may, however, contain more than one separator,

so a procedure is needed to discriminate which one acts as head of the sentence.

To this end we have introduced a hierarchy among the separators that allows us to

decide which one is the main separator of a sentence.

We first define the predominant separator class, SC pred, as the class of separators

(excluding punctuation marks) whose number of occurrences in the corpus is larger

than N – the number of sentences in the corpus. Actually, we do not consider

separators independently, but group those belonging to the same lexical category

(e.g., VB* if we are considering verbs). The number of occurrences of a separator

category sec is then counted as

#sec =
∑

s∈sec
#s.

Grouping by lexical category is only done for corpora that annotate PoS tags using

the same initials if they belong to the same category (most corpora are annotated

this way). Otherwise each PoS tag is considered separately. Thus, the predominant

separator class is defined as the set SC pred = {sec : #sec ≥ N}.
As expected, several languages and corpora used in this work do have a

predominant separator category. In the English corpus WSJ10, 9,114 out of the

9,799 (93%) occurrences of the category VERB (VB, VBD, VBG, VBN, VBP,
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1 for each E ∈ SC pred do
2 if#(X E) = max{#(Y E), Y ∈ T}, then
3 Partners ← X
4 for each P ∈ Partners do
5 for each E ∈ SC pred do
6 if there is any sequence P ... T E do
7 Partners ← Partners − P

Fig. 5. Identifying partners. T stands for the set of PoS tags.

and VBZ) are separators. Analogously, in the Spanish corpus UAM10, 466 out

of the 497 (93.76%) occurrences of the VERB category (VPAST, VPRES, VPART,

VINFINITE, VIMPERFECT, VFUT, VCOND, and VNO) are separators. The same

is found in the Italian and the German corpora. On the contrary, for the Hebrew

and the Chinese corpora SC pred is empty, hence this technique cannot be used to

identify the head of sentences.

For corpora with a nonempty SC pred and sentences with only one separator

in this class, the head of the sentence is immediately identified as this separator.

However, many sentences have more than one predominant separator, so establishing

a hierarchy within SC pred will help decide which one should be identified as the

head of the sentence. Again we resort to sc to build this hierarchy.

It is an empirical observation that holds in all analyzed corpora that sc tends

to appear before the predominant separators. This makes sense for the English

corpus because sc is a noun phrase, but is also valid for other languages. The

hierarchy is therefore determined by the frequency of appearance of the elements of

SC pred after sc in the sentences of the corpus – the more frequent a predominant

separator, the higher in the hierarchy. Thus, if a sentence contains more than one

separator in the SC pred class, the head of the sentence is that higher in the

hierarchy.

There is a small refinement that we still need to deal with. Separators in the

SC pred class may have special PoS tags associated to them. This is the case

of auxiliary verbs, for instance. We call these tags partners of the predominant

separators. These are detected in two steps. The pseudocode in Figure 5 represents

the proccess for identifying partners. In the first step, we find the PoS tags that

most frequently appear preceding each separator of SC pred (lines 1–3). In the

second step, we remove from the partners those tags whose appearance may

be due just to pure chance. This is ascertained by checking whether the tag

also appears before – but not immediately before – the head3 of the sentence

(lines 4–7).

In the English corpus, EX, MD, PRP, TO, WDT, and WP are the PoS tags that

most often precede a predominant separator. Except for TO and MD, these are also

found preceding the head of the sentence; therefore the only partners of WSJ are

TO and MD.

3 At that point, the algorithm has already identified the predominant separator class.
Therefore, we consider that the head of the sentence is the tag (if any) belonging to
the predominant separator class (the highest in the hierarchy if there are more than one,
and the leftmost one if they are at the same level).
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Table 3. Hierarchy of predominant separators used to determine the tag that divides
sentences. Vx stands for other PoS tags beginning with V at the same level

Level WSJ

1 VBD, VBZ, VBP, TO Vx, MD Vx

2 VB, VBG, VBN

Partners are included in the hierarchy, along with the predominant separator they

accompany, using the same criterion as with the ordinary elements of the SC pred

class – counting the number of occurrences after sc. Table 3 shows the hierarchy

obtained for WSJ. Levels in this hierarchy are determined by the order of magnitude

of the number of occurrences of the tag after the safe constituent. Level 1 in Table 3

corresponds to hundreds of occurrences, whereas level 2 corresponds to tens.

The process to identify the hierarchy of predominant separators appears in the

induction algorithm (Figure 4, lines 22–34).

3.3 Detecting joiners

Joiners are a special type of separators that not only trigger a new level in the tree

but also join pieces of information at the same level. This is the case of CC in

Figures 2 and 3. We expect to find similar patterns on both sides of a joiner, and

this feature identifies them.

We assume that a particular PoS tag is a joiner if it tends to be preceded and

succeeded by the same tag. In particular, the algorithm for determining whether tag

X is a joiner searches for sequences of three tags of the form Y XZ in the corpus

and checks whether those with the form Y XY are more than 50%. This test appears

in the induction algorithm in Figure 4 (lines 35–41).

The set of joiners detected for the English corpus WSJ comprises only CC.

3.4 Punctuation marks

The presence of punctuation marks in sentences can provide important clues

to the underlying structure. In fact, Spitkovsky et al. (2011) have observed a

strong connection between English punctuation and phrase boundaries in the Penn

Treebank. They used this link between punctuation and constituent boundaries

to approximate parsing by treating inter-punctuation fragments independently,

obtaining an important improvement in unsupervised dependency parsing. We have

also considered punctuation in our patterns definition.

We distinguish two different groups: Single punctuation marks – such as the

comma, semicolon, and colon, and double punctuation marks – such as quotations,

parentheses, and brackets. Again, we perform an automatic search for this class of

PoS tags. We check for non-alphanumeric symbols appearing in the corpus and mark

the positions of the sentence where they appear. For any identified punctuation mark
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we check whether it has a complement, i.e., another punctuation mark appearing in

a similar number of sentences.4

The process to identify punctuation marks appears at the end of the induction

algorithm (Figure 4, lines 42–47).

The set of punctuation marks detected for the English corpus WSJ

is ” “ ’ ‘ # $ . , :.

4 Parsing sentences with PoS tag classes

Once the PoS tags have been classified, they can be used to parse sentences. Parsing

a sentence starts with a preprocessing step which chops it into segments. To do this

we first check whether the sentence has a head. It does if it contains at least one

predominant separator (i.e., a separator in the SC pred class; see Section 3.2). If

there are more than one, the head is the one with the highest rank in the hierarchy

defined within the SC pred class. If there is a head, the part of the sentence from the

beginning to the head (excluded) is identified as a segment, and the part from the

head (included) to the end as another segment. If there is not a head, this division

of the sentence is not applied. On top of that, any sequence of PoS tags appearing

between pairs of punctuation marks is also identified as a segment.5 Segments are

our first constituents, and the parsing proceeds segment-wise.

The parsing algorithm is detailed in Figure 6. We first look for predominant

separators (separators in the SC pred class), including possible partners. If there is

one, we identify it as the head of the sentence (lines 1–7). If there is more than

one, we resort to the SC pred hierarchy and identify the top one as the head of the

sentence. If the sentence has a head, we divide it into two segments as described

above.

In parsing sentences we assume that any PoS tag sequence inside a double

punctuation mark is another phrase. In this case we apply the same procedure as

for any other sentence. Otherwise, the punctuation marks are ignored. The first two

commas, if any, are also considered double punctuation marks, provided the head

of the sentence does not appear in between. Accordingly, we check for the presence

of paired punctuation marks. Any pair of these identifies a new segment. Segments

are parsed separately.

Next, we use the separators to identify further constituents (lines 9–12), which

are then refined by identifying the delimiters with left and right preferred directions

(lines 13–15). Finally, we identify the joiners and, if necessary, adapt the tree structure

to them (lines 16–28).

For each sentence, the algorithm described in Section 3 runs along the sequence

of its n PoS tags to detect separators, delimiters, etc. This process requires O(n× |T |)

4 Strictly speaking, the complement should appear exactly the same number of times, but
we allow for a small difference, less than 10%, to account for errors in the PoS tagging of
the corpus.

5 During the parsing process, the sequences of tags between double punctuation marks are
considered a segment and parsed. Besides, the sequence of tags between two consecutive
single punctuation marks is also considered a segment.
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1 if the language has a predominant separator then
2 Identify the PoS tags in SC pred class
3 Select the higher one (which can include a partner) or the leftmost one if there
4 is a tie, HSC pred, in the SC pred hierarchy to divide the sentence
5 Split the sentence in segments according to HSC pred and paired punct. marks

(the first two commas, if any, are also considered paired if HSC pred does
not appear in between)

6 else
7 Split the sentence in segments according to the leftmost separator and

paired punct. marks
8 for each segment in the sentence do
9 for each PoS tag S ∈ Separators do
10 Form a constituent C with the PoS tag sequence from the tag right after S

to the next separator
11 Form a constituent from S to the end of the segment
12 Form a constituent from C to the end of the segment
13 for each PoS tag D ∈ Delimiters do
14 if grouping direction(D) = right and D /∈ sc then
15 Form a constituent from the beginning of the segment up to D

16 for each PoS tag J ∈ Joiners do
17 Select the constituents C1 and C2 at both sides of J
18 if the tag S after J ∈ Separators then
19 if S appears on the left of J then
20 choose C1 to begin at the closest S on the left of J
21 else if any other separator S appears on the left of J then
22 choose C1 to begin at the closest S on the left of J
23 else choose C1 as the longest constituent before J

24 else
25 choose C1 as the longest constituent on the left of J
26 choose C2 as the longest constituent on the right of J
27 Delete the constituents going beyond C2
28 Form a constituent with C1JC2

Fig. 6. Parsing algorithm based on the PoS tag classes, assuming a right-branching structure

(separators are expected to appear on the left of the constituents). The approach is also valid

if we assume left-branching structure. Segments are sequences of PoS tags that are parsed

separately.

steps, |T | being the size of the PoS tag set. The constituent identification algorithm

described in this section takes O(n2) steps, because for each position in the sentence

the algorithm must find the end of the corresponding constituent. The scope of

joiners is decided after this constituent identification phase by searching for similar

constituents at both sides of the joiner, deleting some previous constituents and

forming a new one when necessary. The computational cost of this is O(3n2). The

whole algorithm described in this section is thus O(n2). Since sentences are usually

short (n hardly exceeds 40), the algorithm turns out to be very efficient.
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Fig. 7. Parse tree for the sentence The merged firm will carry Norris McLaughlin’s name,

according to (a) our proposal, and (b) from the Penn Treebank.

As of space requirements, the algorithm only needs to store the PoS tag sequence,

the role of each PoS tag, and the identified constituents. This simply requires an

n × n table.

A running example will illustrate how the parsing algorithm works. Consider the

sequence of PoS tags corresponding to the WSJ10 sentence The merged firm will

carry Norris McLaughlin’s name, namely:

DT VBN NN MD VB NNP NNP POS NN

Predominant separators appear in boldface. The SC pred hierarchy determines that

MD Vx – which includes a partner – is above VBN; accordingly, MD is the head

of the sentence, and hence the dividing tag:

[DT VBN NN] [MD VB NNP NNP POS NN]

The next step is to find additional separators not in the SC pred class, if any, and

use all separators to further divide the sentence. For instance, VBN yields two new

constituents: the sequence from VBN (included) to the end of the segment [VBN

NN], and the sequence in between VBN and MD – the next separator – [NN]. The

same is done for each separator, so we end up with:

[DT [VBN [NN]]] [MD [VB [NNP NNP POS NN]]]

We next seek the delimiters (underlined in the sentence):

[DT [VBN [NN]]] [MD [VB [NNP NNP POS NN]]]

In this case, all the delimiters of the last constituent have preferred direction right,

according to Table 2. Since NNP belongs to sc, [NNP NNP POS] is identified as a

constituent and [NN] as another one. This leads to:

[DT [VBN [NN]]] [MD [VB [[NNP NNP POS] [NN]]]]

Figure 7 compares the tree resulting from applying our algorithm to this sentence

with that provided by the Penn Treebank. We can see that both trees are almost

identical, with the only exception that our algorithm considers that both The merged

firm and merged firm are constituents, while the tree in the Penn Treebank only

considers that The merged firm is a constituent.
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5 Experimental results

The system – the code is publicly available at http://nlp.uned.es/∼jsant/ – has

been evaluated against the gold-standard trees provided by the treebanks. Our

constituents are not assigned any class name (e.g., noun phrase, verb phrase, etc.)

as in the treebanks. The comparison therefore ignores class labels, considering only

groups of tags. The results provided by Klein and Manning (2005), Bod (2006),

and Golland et al. (2012) have been our reference, as they are also designed for

constituent grammars using PoS-tagged corpora. For the sake of comparison, we

have evaluated our algorithm with the same corpus, the Penn Treebank, so we can

readily test our results against the measures reported in those works.

The most common measures (Abney et al. 1991) used to evaluate the quality of

an induced grammar or a parsing – and those we have employed in this work – are

precision, recall, and their harmonic mean (F-measure). Note that in our case these

measures deliberately ignore the labels assigned to the parse tree (which are not a

product of our algorithm).

5.1 Evaluation for different languages

For English language, we have used the Wall Street Journal section of the Penn

Treebank, containing 49,208 sentences, but we have also applied our algorithm

to other corpora in different languages. To be precise, we have tested it with the

following:

• The UAM Spanish (Romance language) Treebank (Moreno et al. 2000),

containing 1,501 syntactically annotated Spanish sentences collected from the

online edition of Spanish newspapers.

• The German (Germanic language) corpus NEGRA (Skut et al. 1997), with

20,602 sentences from German newspaper texts.

• The Italian (Romance language) corpus TUT (Lesmo, Lombardo and Bosco

2002), containing 2,860 Italian sentences collected from different sources.

• The HTB corpus (Sima’an et al. 2001), a Modern Hebrew (Semitic language)

Treebank with 6,501 sentences from Hebrew press sources.

• The Chinese Treebank 7.0 (Xia et al. 2000) in Mandarin Chinese (Chinese

language family), with 51,447 sentences from Chinese newswires, magazine

news, various broadcast news and broadcast conversation programs, web

newsgroups, and weblogs.

These languages not only belong to four different families but also present different

types of morphology and degrees of freedom in the word order.

Regarding morphology, although all languages are mixed types, some of these fit

best into one category than into another. Most Indo-European languages, including

Spanish, Italian, and German, are considered synthetic, as they form words by

affixing a given number of dependent morphemes to a root morpheme. Chinese is

the usual model of analytic language, as it tends to be uninflected. Hebrew grammar

is partly analytic, expressing such forms as dative, ablative, and accusative using

prepositional particles rather than grammatical cases. However, inflection plays a
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decisive role in the formation of verbs and nouns. English is moderately analytic

(more analytic than other Indo-European languages).

Spanish and Italian word order is much more flexible than that of English. In

Spanish, changes in the subject-verb-object order are very frequent and common in

every day writing. In German, word order is also less rigid than in English. In main

clauses the inflected verb has position 2. In subordinate clauses the verb appears at

the very end. The Mandarin Chinese object has a great deal of flexibility. It usually

appears after the verb, but other frequent possibilities are before the verb, before the

subject, or is even omitted. A specific feature of Chinese is that verbs can become

nouns without undergoing any sort of change. In most cases, the order of the words

in Hebrew does not affect the meaning. Hebrew sentences do not have to include

verbs, and the verb to be in present tense is omitted. Unlike the verb to have in

English, none of the possession terms in Hebrew is a verb.

Full corpora were used to extract the statistical patterns for classifying PoS

tags. To test the parsing algorithm, though, some experiments were performed on

restricted sets containing sentences up to ten words long for the sake of comparison

with previous works (Klein and Manning 2005; Bod 2006; Bod 2007) with a

similar experimental setting, i.e., constituent grammars and PoS-tagged corpora. We

will refer to these test sets as WSJ10, UAM10, NEGRA10, TUT10, HTB10, and

CTB10, respectively. In addition, we also experimented with longer sentences (see

Section 5.2). We have followed the convention from other unsupervised systems

(Bod 2006; Seginer 2007a) of using a test set that is a subset of the training set.

The performance of our model on a given language mainly depends on two factors:

One is, of course, how well our underlying assumptions capture real linguistic in the

language; but not less important is the particular annotation scheme followed in the

analyzed treebanks. Our current model produces trees similar to those in the Penn

Treebank (in their size and number of levels), while other treebanks use different

conventions.6 To be fair, a degrading in precision and recall due to annotation

differences cannot be considered a drawback of the model. To circumvent this

problem we have resorted to another measure: the average number of crossing

brackets (CB) (Abney et al. 1991). It counts the number of constituents that violate

the boundaries of a constituent in the gold standard. Obtaining a low CB along with

a low F-measure is an indication that the annotation scheme differs significantly

from ours.

Table 4 shows the results obtained with our algorithm for the subsets of sentences

having up to ten words using different corpora. The low CB obtained in all cases

indicates a high performance of the proposed approach (on average, more than a

half of the constituents do not have any crossing brackets). We observe that with

the exception of Spanish, Hebrew, and Chinese, CB rates are below 0.5. In Spanish,

the CB rate is slightly higher than 0.5, possibly due to a small corpus size. Still

the system obtains good results even for the smallest corpora: Spanish (396) and

6 NEGRA presents very flat phrases: pre- and post-modifiers are attached directly to the
phrase, nominal subjects are attached directly to the sentence, and nominal material within
PPs does not project to NPs (Maier 2006).
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Table 4. Performance results, in terms of crossing brackets (CB), unlabeled precision
(UP), unlabeled recall (UR), and unlabeled F-measure (UF) obtained for different
languages, considering sentences of up to ten words. The last two columns correspond to
the average number of constituents per sentence in each data set, according to the gold
standard (#C-GS) and as obtained with our method (#C-SEP). The languages are
English (WSJ10), German (NEGRA10(1) and NEGRA10(2)), Spanish (UAM10),
Italian (TUT10), Hebrew (HTB10), and Mandarin Chinese (CTB10). The second
column shows the size of each corpus. In all cases we have considered only sentences
with up to ten words from the corresponding corpus. NEGRA10(2) provides the results
for NEGRA10 annotating the verbal group separately. Corpora sizes are numbers of
kept sentences

Corpus Size CB UP (%) UR (%) UF (%) #C-GS #C-SEP

WSJ10 7,422 0.30 86.24 90.33 88.23 5.05 5.28

NEGRA10(1) 7,537 0.49 50.75 81.97 62.69 3.21 5.19

NEGRA10(2) 7,537 0.42 59.51 81.31 68.72 3.21 4.39

UAM10 396 0.63 70.52 87.67 78.16 5.40 6.72

TUT10 563 0.45 73.86 87.19 79.97 4.13 4.87

HTB10 1,039 1.11 59.84 73.77 66.08 4.48 5.53

CTB10 15,138 1.11 59.23 61.14 60.17 3.80 3.92

Italian (563). A slightly lower level of precision for the German corpus (NEGRA)

along with a low CB rate hints at differences in the annotation schemes. The second

row for this corpus, NEGRA10(2), confirms this fact. It corresponds to the results

annotating the verbal group separately in the trees produced by our system: the verb

is not included in the verb constituent. We can see that this minor change improves

the results significantly.

Apart from German, which uses an annotation scheme rather different from ours,

the poorest results are obtained for Hebrew and Chinese. Higher CBs obtained for

these corpora suggest that some of the patterns that we have considered may not

be meaningful for these languages. We have delved into these corpora to identify

the reasons for these lower results. The first difference that we have found is the

number of verbs that have been identified as separators in each corpus. In Hebrew

and Chinese this number is smaller than the number of sentences, whereas in the

other corpora it is larger. Therefore, the patterns we rely upon to identify heads of

sentences are invalid for Hebrew and Chinese.

Another difference lies in the contribution of different patterns, shown in Table 5.

In order to study the contribution of each pattern we have evaluated the performance

of the system introducing these patterns one by one: first, only separators and

delimiters (first column);7 punctuation marks are then processed as special tags

in addition to separators and delimiters (second column); next we add special

processing for joiners (third column); and finally all patterns are introduced,

including the predominant separator hierarchy (fourth column). The results for

English, German, Spanish, and Italian improve significantly with the introduction

of each new pattern – the only exception being the hierarchy of the predominant

7 Punctuation marks are processed as any other tag, and the first separator which is a verb
is used to divide the sentence into two parts.
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Table 5. Contribution to the F-measure of different patterns. The languages are
English (WSJ10), German (NEGRA10(1) and NEGRA10(2)), Spanish (UAM10),
Italian (TUT10), Hebrew (HTB10), and Chinese (CTB10). For the Hebrew and the
Chinese corpora SC pred is empty, hence this pattern does not apply. The numbers
in parentheses indicate the decrease/increase percentage with respect to the original
performance (1st column)

Corpus Sep. & Delimit. Punc. marks Joiners Pred. sep. hie.

WSJ10 81.33 85.61 (+5.26%) 86.81 (+6.73%) 88.23 (+8.48%)

NEGRA10(1) 61.23 61.44 (+0.34%) 62.22 (+1.61%) 62.69 (+2.38%)

NEGRA10(2) 67.10 67.37 (+0.40%) 68.21 (+1.65%) 68.72 (+2.41%)

UAM10 74.05 74.78 (+0.98%) 76.25 (+2.97%) 78.16 (+5.55%)

TUT10 76.89 77.59 (+0.91%) 79.97 (+4.00%) 77.39 (–0.65%)

HTB10 64.17 64.47 (+0.46%) 66.08 (+2.97%) –

CTB10 59.48 60.03 (+0.92%) 60.17 (+1.16%) –

separator category for Italian. As a matter of illustration, the pattern related to

punctuation marks improves the results for WSJ10 from 81.33% to 85.61% , and

the pattern for joiners improves the results for TUT10 from 77.59% to 79.97% .

These effects are much less noticeable for Hebrew and Chinese. We also observe

that the predominant separator hierarchy pattern is not detected for Hebrew and

Chinese. This result agrees with the presence of constructions in these languages in

which the verb can be omitted.

All in all, even for the languages with the lowest performance (Hebrew and

Chinese), the results improve over those obtained by other models, as we will show

below.

5.2 Comparison with other systems

We have compared our results with those obtained for the same corpus by Klein

and Manning (2005) (constituent-context model), KM, Bod’s (2006, 2007) U-DOP

and U-DOP* (a modification of U-DOP that can manage larger subtrees), and

Seginer’s (2007a) incremental parser. Table 6 shows the comparison for WSJ10. Our

results attain a higher value for the F-measure as well as more balanced recall and

precision values.

We have also evaluated our system on longer sentences. Table 7 compares the

unlabeled F-measure obtained using our algorithm with those of Bod’s (2006, 2007),

Seginer (2007a) , and Golland et al. ( 2012) for sentences of up to forty words long.

We can see that the longer the sentences, the worse the methods perform, although

our method consistently outperforms the others for all lengths.

Seginer (2007a, 2007b) built the Common Cover Links (CCL) parser, an im-

plementation of his proposal for unsupervised incremental parsing based on the

common cover link representation of syntactic structure. Its being publicly available

has allowed us to compare our results with those obtained with the CCL parser for

all corpora that we have considered. Table 8 shows this comparison. For all corpora,

our results improve over those of CCL. Furthermore, the improvement persists with
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Table 6. Results (unlabeled recall, precision, and F-measure) obtained using our
separator approach (first row), compared with those of Klein and Manning’s (2005)
(second row), Bod’s (2006, 2007) (third and fourth row), and Seginer (2007a) (fifth
row), for the WSJ10 corpus

UR (%) UP (%) UF (%)

Our approach 90.33 86.24 88.23

Constituent-Context Model (CCM) 80.2 63.8 71.1

Unsupervised Data-Oriented parsing (U-DOP) 2006 70.8 88.2 78.5

Unsupervised Data-Oriented parsing (U-DOP*) 2007 – – 77.9

Common Cover Links parser (CCL) 75.6 76.2 75.9

Table 7. Unlabeled F-measure obtained for the WSJ corpus as test corpus for different
sentence lengths: up to 10, 20, 30, and 40 words. The first row corresponds to our
separator approach, the second row corresponds to Bod’s (2007), the third row to
Seginer’s (2007a), and the fourth row to Golland et al.’s (2012)

10 20 30 40

Our approach 88.23% 79.67% 74.29% 72.10%

Unsupervised Data-Oriented parsing (U-DOP*) 77.9% – – 64.2%

Common Cover Links parser (CCL) 75.9% 64.7% 59.91% 57.4%

Log-Linear CCM (LLCCM) 72.0% 60.0% 50.3% 47.6%

increased sentence length. One should realize, though, that the CCL system parses

plain text, while our system requires PoS-tagged text. According to Seginer’s (2007a)

data, the CCL parser outperforms any other system that also parses plain text and

achieves results close to those obtained by systems using PoS-tagged text, including

U-DOP and DMV+CCM(PoS)8 (Klein and Manning 2004) when parsing WSJ10

and NEGRA10.

Our system, implemented in Java on a PC Intel Core 2, parses the sentences

efficiently, as shown in Table 9. The table also shows the execution times on the

same computer corresponding to the CCL system (Fast Unsupervised Incremental

parsing) by Seginer (2007b), which performs a particularly efficient greedy parsing.

We can observe that, although the CCL times are better – about an order of

magnitude smaller – the execution time required by our system is still small enough

to make the system useful. Our system is capable of parsing the largest corpus in a

few minutes. For instance, the complete Chinese corpus CTB is parsed in six minutes

and the English corpus WSJ in less than eight minutes.

5.3 Analyzing the effect of the PoS tag set

The granularity of the PoS tag set affects the results. To investigate its influence, we

have performed some experiments with other tag sets as well.

8 Constituent-Context Model plus Dependency Model with Valence using PoS tags.
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Table 8. F-measure results obtained using Seginer’s (2007a) CCL model and the
algorithm described in this paper (Sep.). Results are obtained for different languages
– English (WSJ), German (NEGRA), Spanish (UAM), Italian (TUT), Hebrew
(HTB), and Chinese (CTB) – and considering a test corpus containing sentences of
up to 10, 20, 30, and 40 words long, as well as the whole corpus. The PoS tag classes
used to construct our system are extracted from the whole corpus. These classes are
then used to parse the sentences of all subsets of the corpus regardless of their length.
Figures with only one significant digit have been taken from the Seginer’s paper

10 20 30 40 Whole

Corpus CCL Sep. CCL Sep. CCL Sep. CCL Sep. CCL Sep.

WSJ 75.9 88.23 64.7 79.67 59.91 74.29 57.4 72.10 56.5 70.97

NEGRA 59.0 62.69 45.7 49.81 41.49 45.56 40.6 44.23 40.1 43.65

UAM 67.19 78.16 60.85 69.54 59.77 67.12 59.69 66.02 59.69 65.44

TUT 61.52 79.97 51.18 70.91 46.30 65.25 43.76 62.42 40.88 59.38

HTB 61.88 66.08 53.96 57.80 49.74 54.40 48.40 52.64 46.99 50.70

CTB 44.98 60.17 32.71 47.25 28.50 42.91 26.68 41.01 24.70 39.16

Table 9. Execution times for our system (Sep.) and CCL (Seginer 2007a). First
column shows the considered corpus, and the number of sentences it is composed of;
second column shows our system (Sep.) execution time in seconds; third column shows
the number of sentences processed per second in our system; fourth column shows
the CCL execution time; and the fifth column shows the CCL number of sentences
processed per second

Corpus Sep. Ex. T.(s.) Sep. sent/s. CCL Ex. T.(s.) CCL sent/s.

WSJ (49,208 sent.) 468 105 38 1,294

NEGRA (20,597 sent.) 91 226 11 1,872

CTB (51,298 sent.) 360 142 47 1,091

UAM (1,501 sent.) 20 75 1 1,501

TUT (2,859 sent.) 32 89 2 1,429

HTB (6,218 sent.) 99 62 4 1,554

Table 10 compares the results of using both, a smaller PoS tag set and a set of PoS

tags obtained in an unsupervised manner. For the smaller set of PoS tags, we have

considered the coarse-grain tag set proposed by Petrov et al. (Das and Petrov 2011;

Petrov, Das and McDonald 2012) comprising only twelve universal PoS tags. The

corresponding results appear in the central three columns of the table. The global

F-measure is not very different from the one obtained with the original PoS tag set

of each corpus. In some cases, such as English, German, and Spanish, results are

slightly worse. In others, such as Italian, results remain nearly the same. Finally, in

some cases, such as Chinese and Hebrew, results improve by increasing the PoS tag

granularity.

In addition, we evaluated the system using an unsupervised Hidden Markov

Model (HMM) PoS tagging, estimated by means of a Gibbs sampling (Gao and
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Table 10. Performance results, in terms of unlabeled precision (UP), unlabeled
recall (UR), and unlabeled F-measure (UF) obtained for different sets of PoS tags,
considering sentences of up to ten words. The languages are English (WSJ10), German
(NEGRA10), Spanish (UAM10), Italian (TUT10), Hebrew (HTB10), and Mandarin
Chinese (CTB10). The first three columns show the results for the original PoS tag
set of each corpus. The second three columns show the results using Petrov et al.’s
(2012) coarse grain PoS tag set. The last three columns show the results for the PoS
tag set provided by an unsupervised PoS tagger based on Gibbs (Gao and Johnson
2008) sampling. In all cases we have considered only sentences with up to ten words
from the corresponding corpus

Original PoS tag set Petrov PoS tag set Unsup. PoS tag set

Corpus UP UR UF UP UR UF UP UR UF

WSJ10 86.24 90.33 88.23 77.56 88.55 82.69 73.10 78.66 75.78

NEGRA10 50.75 81.97 62.69 48.68 75.33 59.14 46.61 69.03 55.64

UAM10 70.52 87.67 78.16 67.26 82.87 74.26 63.51 79.88 70.76

TUT10 73.86 87.19 79.97 73.35 86.46 79.36 67.52 79.71 73.11

HTB10 59.84 73.77 66.08 62.68 76.85 69.04 59.49 70.43 64.50

CTB10 59.23 61.14 60.17 66.94 72.71 69.71 47.61 50.50 49.01

Johnson 2008), which is publicly available.9 The corresponding results appear in

the last three columns of the table. We can see that, albeit the tagging precision

has been significantly lowered because we have performed an unsupervised tagging

of the sentences, the results are still valuable and similar to those obtained using

Seginer’s (2007a, 2007b) approach, which was specifically designed for parsing plain

text. In some cases, such as WSJ10 and NEGRA10, results are slightly worse than

Seginer’s (2007a, 2007b), but they are clearly better for the rest of the corpora. These

results should improve with the tagging precision.

6 Conclusions and future work

The proposed systems have achieved a competitive performance for different corpus.

The upside of our proposal is that it can be applied to any language for which we

have a PoS tagger. Another advantage is its efficiency in parsing sentences: Once

we have obtained the PoS tag classes from a corpus, the procedure for parsing new

sentences only requires identifying the different PoS tag classes that they contain in

order to group them into constituents.

There are many directions in which we are planning to extend the present work.

We are studying the way of adapting the algorithm to perform dependency parsing.

We think that some of the PoS tag classes identified, such as the separators, can

be an important clue for doing the transformation. We also consider the way of

adapting the behavior of the algorithm to other families of languages. Besides,

we are planning to check the results obtained when testing different languages

in more similar conditions. This will imply a fully unsupervised configuration,

9 http://research.microsoft.com/en-us/downloads/25e1ecf0-8cfa-4106-ba25-
51b0d501017d/default.aspx
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including tagging, and using parallel corpora of the same size for training in all

languages, or at least comparable corpora. Other aspect to study is the introduction

of indeterminism in the method by considering probabilities in the selection of PoS

tag classes. In this line, we could explore possible ways of taking advantage of small

treebanks if available. We are also looking for a way to combine our system with

the Expectation-Maximization approach to see whether Expectation-Maximization

can improve the search of the less likely structures. Another point that can lead to

some performance improvements is the introduction of some partial lexicalization,

for instance, considering separately each element of some lexical categories, such as

prepositions.
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Appendix Tags used in the Penn Treebank examples

Table 11. Alphabetical list of part-of-speech tags used in the Penn Treebank, used in
our experiments

CC Coordinating conjunction TO To

CD Cardinal number UH Interjection

DT Determiner VB Verb, base form

EX Existential there VBD Verb, past tense

FW Foreign word VBG Verb, gerund/present participle

IN Preposition/subordinating VBN Verb, past participle

conjunction

JJ Adjective VBP Verb, non-3rd ps. sing. present

JJR Adjective, comparative VBZ Verb, 3rd ps. sing. present

JJS Adjective, superlative WDT wh-determiner

LS List item marker WP wh-pronoun

MD Modal WP$ Possessive wh-pronoun

NN Noun, singular or mass WRB wh-adverb

NNS Noun, plural # Pound sign

NNP Proper noun, singular $ Dollar sign

NNPS Proper noun, plural . Sentence – final punctuation

PDT Predeterminer , Comma

POS Possessive ending : Colon, semi-colon

PRP Personal pronoun ( Left bracket character

PP$ Possessive pronoun ) Right bracket character

RB Adverb ” Straight double quote

RBR Adverb, comparative ‘ Left open single quote

RBS Adverb, superlative “ Left open double quote

RP Particle ’ Right close single quote

SYM Symbol (mathematical or ” Right close double quote

scientific)

Table 12. Internal tags used in the Penn Treebank examples

S Simple declarative clause

NP Noun phrase

VP Verb phrase

ADJP Adjective phrase

SBAR Clause introduced by a – possibly empty – subordinating conjunction

-SBJ Marks the structural surface subject

-TMP Marks temporal or aspectual adverbials

-PRD Marks purpose or reason clauses and PPs

-TTL Attached to the top node of a title


