A Parallel Evolutionary Algorithm for
Stochastic Natural Language Parsing

L. Araujo

Dpto. Sistemas Informdticos y Programacién.
Universidad Complutense de Madrid.
lurdes@sip.ucm.es

Abstract. This paper presents a parallel evolutionary program for nat-
ural language parsing. The implementation follows an island model, in
which, after a number of generations, demes exchange some individu-
als in a round-robin manner. The population is composed of potential
parsings for a sentence, and the fitness function evaluates the appropri-
ateness of the parsing according to a given stochastic grammar. Both
the fitness function and the genetic operators, which require that the
result of their application still corresponds to the words in the input sen-
tence, are expensive enough to make the evolutionary program appropri-
ate for a coarse grain parallel model and its distributed implementation.
The system has been implemented in a parallel machine using the PVM
(Parallel Virtual Machine) software. The paper describes the study of
the parameters in the parallel evolutionary program, such as the number
of individuals to be exchanged between demes, and the number of gener-
ations between exchanges. Different parameters of the algorithm, such as
population size, and crossover and mutation rates, have also been tested.

1 Introduction

Evolutionary algorithms are an efficient method to deal with hard optimization
problems [5,8,9]. Statistical methods allow posing different aspects of natural
language processing as optimization problems of some kind of measurements
given by the statistical model. In this way, evolutionary algorithms are a very
useful tool to deal efficiently with different problems of natural language process-
ing. Besides, working with statistical models allows an uncertainty margin on
the results that matches properly with the nature of the evolutionary algorithms
(which do not guarantee the best solution, but one reasonably good).

Natural language parsing is a search problem that requires exploring a tree
of possible parsings. The size of this tree increases exponentially with the length
of the sentence or text to be parsed. By scoring every parsing in the tree, such
a search can be thought of as an optimization problem, since we are looking
for the “best” parsing. Stochastic grammars [4,1] represent an important part
of the statistical methods in computational linguistics, which have allowed real
progress on a number of issues including disambiguation, error correction, etc.
These grammars give us an evaluation of the tree representing a possible parsing

of a sentence, and we will try to find one of the best parsing according to this
measurement.

This work develops a stochastic parallel parser for natural language based on
an evolutionary algorithm. The approach adopted herein is based on the evolu-
tion programming method, as has been extended by Michalewicz [7] to consider
a richer set of data structures for chromosome representation than classic genetic
algorithms. In our case individuals are possible parsings, which are evaluated in
order to give a measure of how they fit the grammar rules.

Despite the ability of genetic algorithms to find a “good” solution, though
perhaps approximate, to optimization problems, when such problems are too
hard, they require a very long time to reach the solution. This has led to dif-
ferent efforts to parallelizing these programs in order to accelerate the process.
Basically, the approaches to this parallelization can be classified in two groups
[2,6]: global parallelization, and island of coarse-grained parallelization. In the
first method there is only one population, as in the sequential model, and it is
the evaluation of individuals, and the application of genetic operators what is
parallelized. In the island model, the population is divided in subpopulation or
demes, that usually evolve isolated except for the exchange of some individu-
als or migrations after a number of generations. In this case, we can expect a
different behaviour of the parallel model, since this model implies a change in
some parameters of the algorithm (such as the population size, which is smaller
in each deme), what can result in a faster convergence. Though such a faster
convergence may, in principle, reduce the quality of the solutions, results shows
[3] that the parallel model with smaller populations but with migration among
demes can improve the quality of the sequential solutions, and that there is an
optimal number of demes which maximizes the performance. We have adopted
the island model, what has allowed us developing a portable implementation
valid for both distributed and shared memory platforms.

The rest of the paper proceeds as follows: section 2 describes the main el-
ements in the evolutionary algorithm for parsing; section 3 is devoted to the
parallel model; section 4 presents and discusses the experimental results and
section 5 draws the main conclusions of this work.

2 Evolutionary Algorithm for a Probabilistic Parsing

Discovering the meaning of a sentence or text for any application (machine trans-
lation, database interfaces, etc) requires extracting their grammatical structure,
usually represented in the form of a labeled tree, which indicates how words
relate to each other and form phrases or clauses. However, many words can play
several grammatical roles, what leads to a forest of possible parsing trees for
a sentence. Probabilistic Context Free Grammars (PCFG)[4] provide a proba-
bilistic model of the language, as well as a mechanism to select one parsing if
there is ambiguity. A PCFG is a context free grammar whose rules are assigned
a probability. In our case, the PCFG provides a measure of the fitness of the
individuals in the evolutionary algorithm.

Individuals The chromosomes of our evolutionary algorithm represent poten-
tial parsings for an input sentence according to a given probabilistic context free
grammar (PCFG). The input sentence is given as a sequence of words. The set
of categories for each word is searched in a dictionary (lexicon). A chromosome
is represented as a data structure containing the following information:

— Fitness of the chromosome.

— A list of genes, each representing the parsing of a different set of words in
the sentence.

The number of genes in the chromosome.

The depth of the parsing tree.

Each gene represents the parsing of a consecutive set of words in the sentence.
If this parsing involves no-terminal symbols, the parsing of the subsequent par-
titions of the set of words is given in later genes. Accordingly, the information
contained in a gene is the following:

— The sequence of words in the sentence to be analyzed by the gene.

— The rule of the grammar used to parse the words in the gene.

— If the right hand side of the rule contains no terminal symbols, the gene
also stores the list of references to the genes in which the analysis of these
symbols proceeds.

— The depth of the node corresponding to the gene in the parsing tree. It will
be used in the evaluation function.

The data structure of Figure 1 represents one possible chromosome for the sen-
tence: “the man sings a song”.

Initial Population In order to create the chromosomes in the initial popula-
tion, the set of words in the sentence is randomly partitioned, making sure that
there is at least one verb in the second part, which corresponds to the main V P.
The set of words corresponding to the NP is parsed by randomly generating
any of the possible VP rules. The same is done for generating the parsing of the
V P with the VP rules. The process is improved by enforcing the application
of those rules able to parse the right number of words of the gene. The process
continues until there are no terminal symbols left pending to be parsed.

2.1 Individuals Evaluation

The opportunities of an individual to survive depend on the measurements of
their adaptation or fitness. In our case, this measurement is given by a couple of
values, feconer, which measures the ability of a chromosome to parse the objective
sentence, and fprop, which measures the probability of the rules employed in the
parsing.

feoner is based on the relative number of coherent genes. A gene will be
considered coherent if

(fitness): X
(number of genes): 4
(genes):
(gene number) (rule) (gene decomposition):
(first word, number of words, gene):
(1) S— NP,VP NP:(l,22)
VP:(3, 3, 3)
(2) NP — Det, Noun Det: The
Noun: man
(3) VP — Verb, NP Verb: sings
NP:(4, 2, 4)
(4) NP — Det, Noun Det: a
Noun: song

Fig. 1. Data structure of a chromosome. The first gene tells us that the set of words in
the sentence has been partitioned by the third word, i.e., the first two words correspond
to the main NP, and the following three words to the main VP. The gene also tells us
that the parsing of the NP is given by the gene 2, and the parsing of the VP is given
by the gene 3. Since the rule in the gene 2 has only terminal symbols in its right hand
side, there is no gene decomposition. On the contrary, the rule for gene 3 presents an
NP symbol in its right hand side, whose parsing is done in gene 4.

a) it corresponds to a rule whose right hand side is only composed of terminal
symbols, and they correspond to the categories of the words to be parsed by
the rule.

b) it corresponds to a rule with non-terminal symbols in its right hand side and
each of them is parsed by a coherent gene.

Accordingly, feoner 1S computed as

penalization

number of coherent genes — >, i1 .cherent genes depth(s)

Jeoter = total number of genes
The formula takes into account the relative relevance of the genes: the higher
in the parsing tree is the node corresponding to an incoherent gene, the worse
is the parsing. Thus the fitness formula introduces a penalization factor which
decreases with the depth of the gene.

fprob is computed as

[[Prob(sy)
i=1

where Prob(g;) is the probability of the grammatical rule of gene g; in the
chromosome.
Fitness is then computed as a linear combination of both:

Fitness = wcoherfcoher + wprobfprob

where weoher and wyprop are parameters that allow tuning the computation along
the evolution process. In the first generations w¢,pe: is higher in order to produce
individuals corresponding to possible parsing trees, while later, wy,., becomes
higher in order to select the most probable individuals.

2.2 Reproduction

Each generation finishes with the creation of new individuals that will substitute
other individuals in the population. These new individuals are created by means
of the crossover and mutation operators.

The crossover operator combines two parsings to generate a new one. The
part of one parent after a point randomly selected is exchanged with the corre-
sponding part of the other parent to produce two offsprings, under the constraint
that the genes exchanged correspond to the same type of parsing symbol (NP,
VP, etc) in order to avoid wrong references of previous genes in the chromosome.
The operator selects two parent chromosomes. Then, a word is randomly selected
from the input sentence, and the inner most gene to which the selected word
corresponds in each parent chromosome is identified. If the genes correspond to
different sets of words, the next gene in the inner most order is selected. This pro-
cess continues until the sequences of words whose parsings are to be exchanged
are the same, or until the main NP or VP are reached. If the two selected genes
parse the same sequence of words, they are exchanged. Otherwise, genes appro-
priated for the exchange are randomly generated. Mutation is applied to the
chromosome resulting of the crossover operation with a probability given by the
mutation rate, an input parameter. In this case, a new parsing is generated for a
randomly selected gene. At each generation a number of chromosomes equal to
the number of offsprings is selected to be replaced. The selection of chromosomes
to be replaced in each generation is performed with respect to the relative fitness
of the individuals: a chromosome with a worse than average fitness has higher
chances to be selected for replacement.

3 Parallel Model and Implementation

We have adopted an island model, which may be implemented in both shared or
distributed memory architectures, thus making the model portable. The design
of the parallel model is intended to reduce the communications. To this purpose,
the following options have been chosen:

— System components: The system is composed of a number of processes, called
cooperative parsers, each of which performs, by evolutionary programming, a
parsing for the same input sentence. The initial condition in each deme (ran-
dom number generation) is different in order to obtain different individuals
in different populations. There is a special process, known as main selector,
which selects the best individual among the best ones of each deme.

MS CP CP CP CP
Fig. 2. Migration Policy. CP stands for Cooperative parser, MS for Main Selector.

— Migration policy: To reduce communications, migrations do not take place
from one deme to any other, but only to the next one (Figure 2). The N
cooperative parsers thus form a ring. Nevertheless, this policy has been com-
pared with an all-to-all policy so as to make sure that this choice does not
imply a significant reduction in the quality of the solutions.

— Synchronism: We have adopted an asynchronous model, in which a cooper-
ative parser, after a fixed number of generations, sends a fixed number of
individuals to the next cooperative parser and then continues the evolution,
checking in each generation the arrival of the same number of individuals
from the previous parser.

— Convergence policy: Again with the aim of reducing communications, a co-
operative parser which reaches convergence sends its best individual to the
main selector. The main selector takes this solution as the absolute best,
giving it to the user and finishing after killing all cooperative parsers. If no
parser which reaches the convergence, all of them finish after a number of
generations fixed given by the user. Then each one sends its best solution to
the selector, which chooses the best among them for the user.

— Clriteria for selection of individuals to migrate: They are randomly chosen
with a probability proportional to their fitness.

— Clriteria for selection of individuals to be replaced by the ‘immigrants™ They
are randomly chosen with equal probability.

4 Experiments

The algorithm has been implemented on C++ language with the software PVM
on a SGI-Cray ORIGIN 2000. In order to evaluate the performance we have
considered the parsing of the sentences appearing in Table 1. The average length
of the sentences is around 10 words. However, they present different complexities
for the parsing, mainly the length and the number of subordinate phrases.

[y

Jack(noun) regretted(verb) that(wh) he(pro) ate(verb) the(det) whole(adj)
thing(noun)

The(det) man(noun) who(wh) gave(verb) Bill(noun) the(det) money(noun)
drives(verb) a(det) big(adj) car(noun)

The(det) man(noun) who(wh) lives(verb) in(prep) the(det) red(adj)
house(noun) saw(verb) the(det) thieves(noun) in(prep) the(det) bank(noun)

N

W

Table 1. Sentences used in the parsing experiments.

4.1 Study of the Evolutionary Algorithm Parameters

The parameters of the algorithm determine the influence of two fundamental
factors in the success of an evolutionary algorithm: population diversity and
selective pressure. The most relevant of them, population size and crossover and
mutation rates, have been studied in detail.

Figure 3 shows the number of generations required to reach a correct parsing
for each sentence versus the population size, in a sequential execution. In general,
the higher the “sentence complexity”, the larger the population size required to
reach the correct parsing in a reasonable number of steps. The sentence complex-
ity depends on its length and on the number of subordinate phrases it contains.
However, large populations lead to replication of chromosomes and slow evolu-
tions, so high percentages of genetic operators are required in order to accelerate
the process.

500 N
A
\ ——— Sentence 1
400 “«. - Sentence 2
\ - Sentence 3
1) h
c
S 300
© \
7 \
2 v
S 200 ’
o
100
i | |
100 300 500 700 900

Population Size

Fig. 3. Number of generations required to reach the correct parsing for different input
sentences, when using crossover rate of 50% and mutation rate of 20%.

4.2 Evaluating the Parallel Model

Sequential Parallel

Sentence 2 Proc.]4 Proc.[6 Proc.]|8 Proc.|10 Proc.
sentencel|16.55 10.48 |(3.08 3.09 2.09 2.09
sentence2|50.03 19.12 (15.02 (10.64 |3.48 3.49
sentenced|(52.70 25.40 |22.71 (19.34 (14.93 |(14.79

Table 2. Time in seconds required to reach a correct parsing when processing sequen-
tially and in parallel.

l L
1 L
0.9
08 |
oot i la
2 @
s | S o7y
[i
P %E = 30 06
08 , o6 = 40
%E =50 05
07 : : 0.4 w ‘
2 4 6 8 2 4 6 P
Number of Cooperative Parsers Number of Cooperative Parsers

Fig. 4. Performance of the sentence 2 Fig. 5. Performance of the sentence 2
for different sizes of the migrating pop- for different intervals of migration, with
ulation, with a population of 50 indi- a population of 50 individual per pro-
vidual per processor, a crossover rate cessor, a crossover rate of 40%, a muta-
of 40%, a mutation rate of 20% and an tion rate of 20% and a migrating pop-
interval between migrations of 10 gen- ulation of 50%.

erations.

Table 2 shows the improvement in performance obtained by increasing the
number of processors. This experiment has been carried out with a population
size of 200 individuals (the minimum required for the sequential version to reach
the correct parsing), a crossover rate of 50%, a mutation rate of 20%, a migrating
population of 40 individuals and an interval of migration of 15 generations. We
can observe that the parallel execution achieves a significant improvement even
with just 2 processors. We can also observe that saturation is reached for some
number of processors. However, this number is expected to increase with the
complexity of the sentences to be parsed.

4.3 Tuning the Parallel Model

There is a number of options that have to be fixed in order to completely spec-
ify the model: rate of the population migrated, number of generations between
migrations, parameters of each cooperative parser (size of the deme, crossover
and mutation rates, and maximum number of generations), which determine the
behaviour of each isolated parser.

Size of the Migrating Population and Migration Interval Figure 4 shows
the results obtained for different sizes of the migrating population for the sen-
tence 2. Results show that a small population, such as that of 50 individuals
used in this experiment, requires a large size of the migrating population (50%),
in order to reach a high fitness.

The interval of migration is another parameter to fix in the parallel model,
closely connected with the size of the migrating population. Experiments have
been carried out in order to determine the best values, once the size of the

0.95 /

0.9

Fitness

o %E =30, | = 5 (RR)
x—— %E = 30, 1 = 5 (AA)
o= %E =50, | = 15 (RR)
*---x %E =50, | = 15 (AA)

s
o
o
0.85
/
,
S

0.8 & : :
2 4 6 8
Number of Cooperative Parsers

Fig. 6. Comparison of two different communication policies: round-robin (RR) and all-
to-all (AA). Results correspond to a population of 50 individual per processor, a limit
of 100 generations, a crossover rate 40% and a mutation rate of 20. In the graphics,
E stands for Exchange rate and I for migration Interval. Fitness corresponds to the
f-coher value.

migrating population has been fixed. Figure 5 shows the results obtained for the
sentence 2. We can observe that the best results are obtained with an interval of
15 generations. On the contrary, the worst results are obtained for too frequent
exchanges (I=5) and also for too spread exchanges (I=20).

Round-Robin or All-to-all We have investigated two different policies mi-
gration:

— Round-Robin policy: cooperative parsers are organized in a ring sequence,
each of them sending the migrating population to the next one in the se-
quence and receiving it from the preceding one.

— All-to-all policy: Each process sends the migrating population to all the other
processes and receives population from all of them. In this case, each process
sends a migrating population equal to the migrating population size divided
by the number of processes in the system.

Figure 6 shows the results obtained with both policies. We can observe that re-
sults obtained with both policies are comparable, the round-robin policy slightly
outperforming the all-to-all one. Therefore, the round-robin policy is more sen-
sible because with a similar performance considerably reduces communications.

5 Conclusions

The complexity of the parsing process for sentences of natural languages makes it
appropriate to use optimization methods such as evolutionary algorithms which
provide an approximate solution in a reasonable time. This work presents an
evolutionary algorithm which works with a population of potential parsings for a

given Probabilistic Context Free Grammar and an input sentence. Probabilistic
grammars allow weighting the possible parsings, thus providing a method to
evaluate individuals. In this work, the evaluation is given by a combination of
the coherence of the parsing, i.e. its ability to match every word and syntactic
tag with the grammar rules, and the probability computed from the probabilities
of the rules applied.

Results from a number of tests indicate that the evolutionary approach is
robust enough to deal with the parsing problem. The tests indicate that the GA
parameters need to be suitable for the input sentence complexity. The more com-
plex the sentence (length and subordination degree), the larger the population
size required to quickly reach a correct parsing.

The evolutionary algorithm has been parallelized in the form of an island
model, in which processors exchange migrating populations asynchronously and
in a round-robin sequence. Experiments on the size of the migrating population
show that it is necessary to exchange a significant rate of the population. Ex-
periments on the migration intervals show that exchanges should be neither too
frequent nor too sparse. Results obtained for these experiments exhibit a clear
improvement in the performance, thus showing that the problem has enough
granularity for the parallelization, even when applied to artificial sentences. It is
expected this improvement to be greater when applied to real sentences as those
extracted from a linguistics corpus.

References

1. L. Araujo. Evolutionary parsing for a probabilistic context free grammar. In Proc. of
the Int. Conf. on on Rough Sets and Current Trends in Computing (RSCTC-2000),
2000.

2. E. Cantd-Paz. A survey of parallel genetic algorithms. Technical report, Illinois
Genetic Algoritms Laboratory, IIliGAL Report No. 97003, 1997.

3. E. Cantu-Paz and D. E. Goldberg. Predicting speedups of idealized bounding cases

of parallel genetic algorithms. In T. Back, editor, Proceedings of the Seventh In-

ternational Conference on Genetic Algorithms, pages pp. 113-120. CA: Morgan

Kaufmann, 1997.

E. Charniak. Statistical Language Learning. MIT press, 1993.

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesly, 1989.

6. R. Poli M. Nowostawski. Review and taxonomy of parallel genetic algorithms.
Technical report, School of Computer Science, The University of Birmingham, UK,
Technical Report CSRP-99-11, 1999.

7. Z. Michalewicz. Genetic algorithms + Data Structures = Ewvolution Programs.
Springer-Verlag, 2nd edition, 1994.

8. A. Ruiz-Andino, L. Araujo, J. Ruz, and F. Sdenz. Parallel evolutionary optimization
with constraint propagation. In Proc. of the Int. Conf. on Parallel Problem Solving
from Nature (PPSN), volume 1498 of Lecture Notes in Computer Science, pages
270-279. Springer-Verlag, 1998.

9. A. Ruiz-Andino, L. Araujo, F. Sdenz, and J. Ruz. A hybrid evolutionary approach
for solving constrained optimization problems over finite domains. IFEE Transac-
tions on Evolutionary Computation, 4(4):353-372, 2000.

Al

