
Parallel Evolutionary Optimisation with
Constraint Propagation *

Alvaro Ruiz-Andino 1, Lourdes Araujo 1, Jose Ruz 2, and Fernando S~enz ~

1 Department of Computer Science
2 Department of Computer Architecture

Universidad Complutense de Madrid

Abs t rac t . This paper describes a parallel model for a distributed mem-
ory architecture of a non traditional evolutionary computation method,
which integrates constraint propagation and evolution programs. This in-
tegration provides a problem-independent optimisation strategy for large
scale constrained combinatorial problems over finite integer domains. We
have adopted a global parallelisation approach which preserves the prop-
erties, behaviour, and theoretical studies of the sequential algorithm.
Moreover, high speedup is achieved since genetic operators are coarse-
grained, as they perform a search in a discrete space carrying out con-
straint propagation. A global parallelisation implies a single population
but, as we focus on distributed memory architectures, the single virtual
population is physically distributed among the processors. Selection and
mating consider all the individuals in the population, but the application
of genetic operators is performed in parallel. The implementation of the
model has been tested on a CRAY T3E multiprocessor using two com-
plex constrained optimisation problems. Experiments have proved the
efficiency of this approach since linear speedups have been obtained.

1 I n t r o d u c t i o n

In this paper we present the parallelisation, for a distributed memory architec-
ture, of an integration of evolution programs and constraint propagation tech-
niques. Evolution programs and constraint propagation complement each other
to efficiently solve large scale constrained optimisation problems over finite in-
teger domains [5, 6]. Evolution programs [3] are an adequate optimisation tech-
nique for large search spaces, but they do not offer a problem-independent way
to handle constraints. Constraint propagation and consistency algorithms, which
prune the search space before and while searching, are valid for any discrete com-
binatorial problem.

Evolutionary programming is inherently parallel. Moreover, in this case, task
granularity is increased because of coarse-grained genetic operators, since they
perform a search embedding constraint propagation.

There are three main approaches to parallelise an evolution program [2, 1]:
global parallelisation, island model, and hybrid algorithms. We have adopted a
global parallelisation approach because of the following reasons:

Supported by project TIC95-0433.

271

- Properties, behaviour, and theoretical studies of the sequential algorithm are
preserved.

- Crossover is coarse-grained, as it implies searching in a discrete search space
performing constraint propagation.

- The higher communications rate of a global parallelisation versus other ap-
proaches does not significantly penalises speedup, since modern distributed
memory multiprocessor provide fast, low-latency asynchronous read/write
access to remote processors' memory, avoiding rendevouz overhead.

Our approach is based on a single virtual population physically distributed
among the processors, in such a way that each processor owns a partial copy
of the population. Selection of chromosomes to be replaced, to be mutated,
and parents to take part in crossover, is performed in a centralised manner by
a distinguished processor (master), but the application of genetic operators is
performed in parallel. Coordination is achieved through annotations in mutual
exclusion on the local memory of the master processor. Scheduling of pending
operations is performed in a dynamic self-guided way, following a set of rules to
minimise the number of chromosomes to fetch from remote processors.

The rest of the paper is organised as follows. Section 2 summarises the main
points of the combination of constraint propagation and evolution programs
presented in [6]. Section 3 presents the parallelisation model, the parallel algo-
rithm, and the work scheduling policy. Section 4 describes the results obtained
for two complex constrained optimisation problems. Finally Section 5 discusses
the conclusions.

2 Cons tra in t P r o p a g a t i o n and E v o l u t i o n P r o g r a m s

Many complex search problems such as resource allocation, scheduling and hard-
ware design [9] can be stated as constrained optimisation problems over finite
integer domains. Constraint programming languages are based on a constraint
propagation solver embedding an Arc-Consistency algorithm [4, 8], an efficient
and general technique to solve finite domain constraint satisfaction problems.
Arc-Consistency algorithms eliminate inconsistent values from the domains of
the variables, reducing the size of the search space both before and while search-
ing.

Constraint propagation techniques and evolution programs complement each
other. Constraint solving techniques opens a flexible and efficient way to handle
constraints in evolution programs, while evolution programs allow searching for
solutions in large scale constrained optimisation problems. Other approaches to
handle constraints in evolution programs require to define problem specific ge-
netic operators, whereas constraint propagation embedded in evolution program
results in a problem-independent optimisation strategy for constrained optimi-
sation problems. This section summarises the main points of the integration.

Constraint Propagation. A constraint optimisation problem over finite
integer domains may be stated as follows. Given a tuple (Y, :D, C, f), where Y =
{vz, �9 �9 �9 vn}, is a set of domain variables; :D = {d l , . . . , dn}, is the set of an initial

272

f inite integer domain (finite set of integers) for each variable; g - {c l , . - . , am},
is a set of constraints among the variables in V, and f : N x . . . x N -+ N is the
objective function to optimise. A constraint c - (Vc, Rc) is defined by a subset of
variables Vc C_ V, and a subset of allowed tuples of values Rc C_ ~4e{j/vjevc} d~,
where (~ denotes Cartesian product. The goal is to find an assignment for each
variable v~ E V of a value from each di E :D which satisfies every constraint
c~ E g, and optimises the objective function f . A constraint c E g relating
variables v~ and vj E V, is arc-consistent with respect to domains di, dj iff for
all a E di there exists b E dj such that (a, b) satisfies the constraint c, and
for all b E dj there exists a E d~ such that (a, b) satisfies the constraint c. A
constraint satisfaction problem is arc-consistent iff all c~ E g are arc-consistent
with respect to :D. An Arc-Consistency algorithm takes as input arguments a
set of constraints to be satisfied and an initial finite integer domain for each
variable. The algorithm either detects inconsistency (a variable was pruned to
an empty domain), or prunes the domain of each variable in such a way that
arc-consistency is achieved.

Integration of evolution programs and constraint propagation implies coming
up with a solution for chromosome representation, chromosome evaluation, and
genet!c operators' design.

C h r o m o s o m e R e p r e s e n t a t i o n . In order to take advantage of the arc-
consistency techniques embedded in the constraint solver, a chromosome is an
array of finite integer domains, that is, a sub-space of the initial search space.
Moreover, chromosomes are arc-consistent solutions (AC-solutions) generated by
means of genetic operators based on an Arc-Consistency algorithm.

C h r o m o s o m e E v a l u a t i o n . Searching for a solution using an Arc-Consis-
tency algorithm involves evaluating the AC-solution generated, since the objec-
tive function is assimilated to a domain variable whose domain is pruned while
searching. The objective function f is defined by means of constraints, leading
to an extended function f~ : N* x . . . x N* --+ N*. f ' takes as arguments finite
integer domains and returns a finite integer domain. A dual evaluation is used:
a fi tness value is computed from the pruned domain of the variable to optimise,
but, as we are dealing with non fully determined solutions, a feasible value is
used to take into account the probability that a feasible solution lies within the
AC-solution.

G e n e t i c o p e r a t o r s implement stochastic heuristic arc-consistent searches,
taking previous AC-solutions as an input information to guide the search for a
new AC-solution. Arc-consistency is achieved at each node of the search space,
removing inconsistent values from the domain of the variables. Figure 1 shows
the A t - c ros sove r function. Given two AC-solutions, the AC-crossov@~ operator
generates a new AC-solution. K (a random value between 1 and n) randomly
chosen variables, Vperm[1] through Vperm[K], a r e constrained to domains from first
parent. Then, Arc-Consistency algorithm is invoked, pruning the search space.
Remaining variables, Vperm[K+l] through Vper,~[n], are constrained one by one
to domains from second parent, performing Arc-Consistency at each step. If
inconsistency is detected at any step, variable's domain is left unchanged.

273

function AC-crossover(AC-SolI, AC-So12) : AC-solution;

begin

perm := random-permutation(l, n) ;

If := random-int-between(1, n) ;

for i = 1 to K do

vpe~[i] : = AC-Soll [perm[i]] ;

end-for;
Perform Arc-Consistency, pruning search space

for i = K+I to n do

•perm[i] : = AC-Sol2[perm[i]] ;

P e r f o r m Arc-Consistency, pruning search space
if Inconsistent then undo assigment;

end-for;

return generated AC-Solution

end;

Fig. 1. AC-Crossover

3 P a r a l l e l i s a t i o n M o d e l

A global parallelisation of the presented constrained optimisation evolution pro-
gram is expected to achieve high speedups, since the constraint propagation leads
to coarse-grained genetic operators. Global parallelisation implies a centralised
population. Shared memory architectures support an straight implementation
of this approach, whereas distributed memory architectures may suffer from
communications overhead. We propose a global parallelisation model for a dis-
tributed memory architecture based on a virtual centralised population, physi-
cally distributed among the processors in order to reduce communications. Tar-
get architecture is any modern distributed memory multiprocessor that allows
fast asynchronous read/write access to remote processors' memory. This fea-
ture places them in a middle point between traditional shared and distributed
memory architectures.

The data distribution model, appearing in Figure 2, can be summarised as
follows:

- The population is distributed among the processors in the system. Each pro-
cessor owns a subset of the population and a local localisation table indicating
a processor where non-local chromosomes can be found.

- One processor of the parallel system is distinguished as master. This proces-
sor behaves as any other, but it is also in charge of the sequential part of
the algorithm, and keeps the shared operation table.

- The master produces the operation table, which reflects chromosomes se-
lected to survive, to be mutated, and to take part in crossover (global mat-
ing). The operation table is broadcasted at the beginning of every generation,
so each processor has a local copy of it.

- Genetic operations are performed in parallel. Coordination is achieved by
means of atomic test&swap on the master processor's operation table. A

274

PROCESSOR k

PROCESSOR) ~f

(/ O p e r a ~
I H H : I "~ 9P erauon ',

~'~- 7 N~ : I r176176176

LE]E] j ow

PROCESSORi
Population

Fig. 2. Data distribution model. Solid arrows represent fetching a remote chromosome.
Dotted arrows represent mutual exclusion access to the shared operation table.

processor may need to fetch (asynchronously) a chromosome from a remote
processor's memory in order to perform the selected genetic operation.

At the beginning of each generation, each processor owns a subset of the
population formed by:

- chromosomes generated by itself in the previous generation.
- chromosomes from the previous population fetched from a remote processor

but not replaced in the current population (steady-state approach). There-
fore, a chromosome may be present at many processors.

Figure 3 shows the algorithm executed in each processor. Initially a subset of
the population is generated (line 1). Every time a new chromosome is generated,
its evaluation (fitness and feasible values) are asynchronously written to the
master's memory. Lines 2 to 14 enclose the main loop; each iteration produces a
new generation. Synchronisation is needed at the beginning of each generation
(line 3), in order to perform the global mating. The master establishes the ge-
netic operations to generate the next population (line 5), filling the operation
table, which is broadcasted to every processor (line 7). The loop in lines 8 to 12
performs genetic operations (crossover or mutation) until there are no more left.
A processor may perform any of the pending operations (line 10), so it may need
to fetch chromosomes from a remote processors' memory (line 9). The resulting
offspring is kept in local memory, but the evaluation values are asynchronously
written to master's memory (line 11).

Scheduling of pending operations is performed in a dynamic self-guided way,
following a set of rules to minimise the number of chromosomes to be fetched
from remote processors. Function Fetch_0perat ion () (line 8), consults the local
copy of the operation table and the localisation table, choosing an operation to
perform. In order to minimise the need to fetch remote chromosomes, the local
operation table is scanned selecting operations in the following order:

275

Procedure Parallel_AC-Evolution;
begin

1 Generate a subset of the initial population;
2 while not terminationO do
3 Synchronisation;
4 if I-am-the-Master then
5 Genera~e-Matings-and-Mutations(Operation_Table);
6 end-if;
7 Broadcasting of Operation_Table;
8 while Fetch_Operation(Operation_Table, Localisation_Table) do
9 Fetch parents, if necessary, updating Localisation_Table;
10 Perform AC-Crossover (or AC-Mutation);
11 Write fitness-feasible to Master;
12 end-while;
13 Update(Localisation_Table);
14 end-while;

end;

Fig. 3. Parallel constrained evolution program.

- Crossover of two local chromosomes.
- Mutation of a local chromosome, or crossover of a local chromosome with a

remote one.
- Mutation or crossover of remote chromosomes.

Once an operation is selected, the corresponding entry of the shared opera-
tion table is tested and updated in mutual exclusion. If the selected operation
has already been performed by another processor, the local operation table is
updated, and another operation is chosen. Otherwise, the processor writes its
unique processor number in the shared operation table. Once every operation
has been performed, local copies of the operation table reflect which processor
has generated the new chromosomes, allowing to properly update the localisa-
tion table (line 13) for the next generation, discarding local copies of outdated
chromosomes.

Figure 4 shows an example of operation fetching. Processor 1 (P1) selects
in the first place the crossover operation (XV) that will replace chromosome
number 3, because both parents (chromosomes 3 and 8) are in its local memory.
P1 successfully test and writes its processor number in the shared operation
table. P2 behaves similarly with respect to operation 2. Once P1 has finished
the crossover operation, it proceeds to select operation 1, as it owns one of the
involved parents, writing its number in the shared operation table. P2 also tries
to fetch operation 1, but it finds that operation has been already selected by
processor 1, so P2 updates its local operation tale and proceeds to select a new
operation.

Figure 5 shows the time diagram for a generation. There is a sequential time
fraction due to the generation and broadcast of the operation table (Ts). The

276

LOCAL
OPERATION TABLE

=

1 5 (~ (XV) P1

2 4 1 XV

| i | ~x,,:,,,,-

M A S T E R PROCESSOR
SHARED

OPERATION TABLE

,= 6: o "'"
- - -"" . """"'%....

j % o Q
3 3 8 XV

PROCESSOR 1 PROCESSOR 2

Fig. 4. Fetch Operation example. Circled numbers denote local chromosomes. Abbre-
viation (genetic operation to perform) in brackets denotes initial value. Solid arrows
denote successful test&write operations. Dotted arrows denote unsuccessful test&write
operations on the shared operation table.

time to perform a crossover in parallel (T=vp) is the sequential time (T=vs), in-
creased with the time to select an operation (Tyo), the time to fetch the parents
(Typ) (only if necessary), and the time to write the evaluation values in master's
memory (T~oe). Policy to select operations favours choosing operations among
local chromosomes, therefore it is expected to frequently avoid the overhead
due to Tfp. Since genetic operators are search procedures, they can have a sig-
nificantly different grain. The dynamic self-guided scheduling of the algorithm
balances work load, thus reducing idle time Tid, introduced by the necessary
synchronisation between generations.

Linear speedups will be obtained if communications overhead --Tfo, Twe and
Tfp-- is much smaller that genetic operation granularity (T~vs), and when the
number of genetic operations per generation is much greater than the number
of processors. In this situation Tid and Ts are much smaller than Tp.

4 E x p e r i m e n t s

Our system CSOS (Constrained Stochastic Optimisation System) implements
the presented parallelisation model. Experiments have been carried out on a
CRAY T3E multiprocessor, a distributed memory parallel system with a low
latency and sustained bandwidth. Processing elements in the T3E are connected
by a bi-directional 3-D torus network achieving communication rates of 480
Mbytes/s. Parallel programming capabilities are extended through the "Cray
Shared Memory Library" and MPI2, which allows fast asynchronous read/write
access to remote processors' memory.

277

~ A Br~ Synchr~176 vp'~l
Ts I I"" I L

I
a-xvp ~. . . . ~ J i 17!~]

" I Tfp [Txvs ["""
Tfo Twe

P1

Pn

Fig. 5. Time diagram for a generation. T8 = sequential fraction (global selection for
mating). Tp = parallel execution of genetic operators. T~.p = parallel genetic opera-
tion. T~., = sequential genetic operation. TIo = fetch an operation from master. Tfp
= fetch remote parents. T~ = write evaluation values to master. T~ = waiting for
synchronisation.

CSOS has been used to solve a number of real life constraint optimisation
problems. Results obtained in two of them are reported: a VLSI signal channel
routing problem, and a devices-to-FPGA mapping problem.

Channel routing consists in assigning a pair layer/track to each net from a
given set of connections such that no routing segments overlap each other. The
objective function to be minimised is the sum of the lengths of routing paths
for a given number of tracks per layer. A chromosome is 432 words long, and
average time to perform a crossover is 35 ms. Sequential execution time is 23
minutes.

A multi-FPGA (Field Programmable Gate Array) is a programmable inte-
grated circuit that can be programmed using the hardware description language
VHDL. The goal is to map the VHDL program process network into a given
multi-FPGA, observing size, adjacency, and capacity constraints, minimising
the maximum occupation. A chromosome is 180 words long, and average time
to perform a crossover is 300 ms. Sequential execution time is 60 minutes.

Problem formulation has been programmed with a Constraint Logic Pro-
gramming language over finite integer domains [7]. Therefore, problem con-
straints, input data, and technology-dependent parameters can be flexibly mod-
ified.

Experiments have investigated the influence of the parameters of the genetic
algorithm on the speedup. A particular issue of the model affecting the speedup
-the ratio of chromosomes fetched from a remote processor- is also reported.
Each reported result is the average of ten executions with a different random
seed.

Figure 6 shows speedup obtained for different parameter settings, all of them
leading to the same number of genetic operations. The speedup is almost linear
in all cases. This means that times due to communications overhead (Tfo, Tfp
and Twe), described in Figure 5 are negligible in comparison with time to perform

278

16

1
11

Channel routing
26

- - (e) PS--3000, NG=25, XVR--O,5 "

Multi-FPGA

/ i
/ / I

~ S = 1 0 0 , NG=150, XVR=0.75 ~,
~ ~ , , 2 . S O , XVR--0.20

6 11 16 21 26 6 11 16 21 26
Number of Processors Number of Processors

Fig. 6. Speedup obtained for different parameter settings. PS = Population size. NG
= No. of generations. XVR = Ratio of population replaced with offsprings.

a crossover Txvs. A lower number of crossovers per generation (small population
and/or low crossover ratio) implies a higher sequentiM fraction and a higher idle
time thus reducing speedup. Therefore, the settings scaling better, (a), (c) and
(e) for the Channel routing problem and (a) for the FPGA's problem, are those
with both higher population size and ratio of population replaced.

100%
Channel routing

8 0 % �9 '

6 0 % ."
/

20% --- - - With Mmqmlsa~ion miss
~ M / ~ m l s a b o n miss

2 l

0% ~6 21

Multi-FPGA

/
/

- - With mmlmlsa~ion lulss
v#o mmimlsabon rules

6 11 16 21
Number of Processors Number of Processors

Fig. 7. Percentage of chromosomes fetched from a remote processor, with and without
the minimisation policy.

Figure 7 illustrates the efficiency of the policy for selecting genetic operations,
displaying the percentage of chromosomes that had to be fetched from a remote
processor versus the number of processors. Solid line corresponds to the self-
guided scheduling using the minimisation rules described in Section 3. Dotted

279

line corresponds to select the first pending genetic operation. Minimisation rules
halves the percentage of chromosomes fetched from a remote processor.

5 Conclusions

We have developed a parallel execution model for a non-traditional evolution-
ary computation method, which integrates constraint propagation techniques
and evolution programs. The system, aimed to solve constrained combinatorial
optimisation problems over finite integer domains, is appropriate for paralleli-
sation due to the coarse-grain of genetic operations. The model is devoted to
run on modern distributed memory platforms, which provide communications
times close to those of shared memory architectures. This characteristic justifies
working with a single virtual population, though distributed across the system.

The parallel version of our system CSOS, which implements the proposed
model, has been ported to a CRAY T3E, a distributed memory parallel mul-
tiprocessor. Two complex constrained optimisation problems over finite integer
domains, coming from the field of hardware design, have been used to test the effi-
ciency of the parallel model. Linear speedups have been obtained when increasing
the number of processors, thus proving our hypothesis that communication over-
head is negligible versus genetic operation execution times. Measurements have
been taken in order to check the effectiveness of genetic operations scheduling
policy. Results reveal that the percentage of chromosomes fetched from remote
processors diminishes by half using our policy.

References

I. Cantd-Paz, E. A survey of parallel genetic algorithms. IUiGAL Report No. 97003
(1997).

2. Grefenstette, J.J. Parallel adaptive algorithms for function optimisation. Tech.
Rep. No. CS-81-19. Nashville, TN: Vanderbilt University Computer Science De-
partment. (1981)

3. Michalewicz, Z.: Genetic algorithms + Data Structures = Evolution Programs.
2nd Edition, Springer-Verlag (1994).

4. Mohr, R., Henderson, T.C.: Arc and path consistency revisited. Artificial Intelli-
gence 28 (1996) 225-233.

5. Paredis, J.: Genetic State-Search for constrained Optimisation Problems. 13th Int.
Joint Conf. on Artificial Intelligence (1993).

6. Ruiz-Andino A., Ruz, J.J. Integration of Constraint Programming and Evolution
Programs: Application to Channel Routing. 11th Int. Conf. on Industrial Applica-
tions of Artificial Intelligence. LNAI 1415, Springer-Verlag (1998) 448-459.

7. Ruiz-Andino A. CSOS User's manual. Tech. Report No. 73.98. Department of
Computer Science. Universidad Complutense de Madrid, (1998).

8. Van Hentenryck P., Deville, Y., Teng C.M.: A generic Arc-consistency Algorithm
and its Specialisations. Artificial Intelligence 57 (1992) 291-321.

9. Wallace, M.: Constraints in Planing, Scheduling and Placement Problems. Con-
stralnt Programming, Springer-Verlag (1994).

