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Abs t rac t .  This paper describes a parallel model for a distributed mem- 
ory architecture of a non traditional evolutionary computation method, 
which integrates constraint propagation and evolution programs. This in- 
tegration provides a problem-independent optimisation strategy for large 
scale constrained combinatorial problems over finite integer domains. We 
have adopted a global parallelisation approach which preserves the prop- 
erties, behaviour, and theoretical studies of the sequential algorithm. 
Moreover, high speedup is achieved since genetic operators are coarse- 
grained, as they perform a search in a discrete space carrying out con- 
straint propagation. A global parallelisation implies a single population 
but, as we focus on distributed memory architectures, the single virtual 
population is physically distributed among the processors. Selection and 
mating consider all the individuals in the population, but the application 
of genetic operators is performed in parallel. The implementation of the 
model has been tested on a CRAY T3E multiprocessor using two com- 
plex constrained optimisation problems. Experiments have proved the 
efficiency of this approach since linear speedups have been obtained. 

1 I n t r o d u c t i o n  

In this paper we present the parallelisation, for a distributed memory architec- 
ture, of an integration of evolution programs and constraint propagation tech- 
niques. Evolution programs and constraint propagation complement each other 
to efficiently solve large scale constrained optimisation problems over finite in- 
teger domains [5, 6]. Evolution programs [3] are an adequate optimisation tech- 
nique for large search spaces, but they do not offer a problem-independent way 
to handle constraints. Constraint propagation and consistency algorithms, which 
prune the search space before and while searching, are valid for any discrete com- 
binatorial problem. 

Evolutionary programming is inherently parallel. Moreover, in this case, task 
granularity is increased because of coarse-grained genetic operators, since they 
perform a search embedding constraint propagation. 

There are three main approaches to parallelise an evolution program [2, 1]: 
global parallelisation, island model, and hybrid algorithms. We have adopted a 
global parallelisation approach because of the following reasons: 
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- Properties, behaviour, and theoretical studies of the sequential algorithm are 
preserved. 

- Crossover is coarse-grained, as it implies searching in a discrete search space 
performing constraint propagation. 

- The higher communications rate of a global parallelisation versus other ap- 
proaches does not significantly penalises speedup, since modern distributed 
memory multiprocessor provide fast, low-latency asynchronous read/write 
access to remote processors' memory, avoiding rendevouz overhead. 

Our approach is based on a single virtual population physically distributed 
among the processors, in such a way that each processor owns a partial copy 
of the population. Selection of chromosomes to be replaced, to be mutated, 
and parents to take part in crossover, is performed in a centralised manner by 
a distinguished processor (master), but the application of genetic operators is 
performed in parallel. Coordination is achieved through annotations in mutual 
exclusion on the local memory of the master processor. Scheduling of pending 
operations is performed in a dynamic self-guided way, following a set of rules to 
minimise the number of chromosomes to fetch from remote processors. 

The rest of the paper is organised as follows. Section 2 summarises the main 
points of the combination of constraint propagation and evolution programs 
presented in [6]. Section 3 presents the parallelisation model, the parallel algo- 
rithm, and the work scheduling policy. Section 4 describes the results obtained 
for two complex constrained optimisation problems. Finally Section 5 discusses 
the conclusions. 

2 Cons tra in t  P r o p a g a t i o n  and  E v o l u t i o n  P r o g r a m s  

Many complex search problems such as resource allocation, scheduling and hard- 
ware design [9] can be stated as constrained optimisation problems over finite 
integer domains. Constraint programming languages are based on a constraint 
propagation solver embedding an Arc-Consistency algorithm [4, 8], an efficient 
and general technique to solve finite domain constraint satisfaction problems. 
Arc-Consistency algorithms eliminate inconsistent values from the domains of 
the variables, reducing the size of the search space both before and while search- 
ing. 

Constraint propagation techniques and evolution programs complement each 
other. Constraint solving techniques opens a flexible and efficient way to handle 
constraints in evolution programs, while evolution programs allow searching for 
solutions in large scale constrained optimisation problems. Other approaches to 
handle constraints in evolution programs require to define problem specific ge- 
netic operators, whereas constraint propagation embedded in evolution program 
results in a problem-independent optimisation strategy for constrained optimi- 
sation problems. This section summarises the main points of the integration. 

Constraint Propagation. A constraint optimisation problem over finite 
integer domains may be stated as follows. Given a tuple (Y, :D, C, f),  where Y = 
{vz, �9 �9 �9 vn}, is a set of domain variables; :D = {d l , . . . ,  dn}, is the set of an initial 
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f inite integer domain (finite set of integers) for each variable; g - {c l , . - . ,  am}, 
is a set of constraints among the variables in V, and f : N x . . .  x N -+ N is the 
objective function to optimise. A constraint c - (Vc, Rc) is defined by a subset of 
variables Vc C_ V, and a subset of allowed tuples of values Rc C_ ~4e{j/vjevc} d~, 
where (~ denotes Cartesian product. The goal is to find an assignment for each 
variable v~ E V of a value from each di E :D which satisfies every constraint 
c~ E g, and optimises the objective function f .  A constraint c E g relating 
variables v~ and vj E V, is arc-consistent with respect to domains di, dj iff for 
all a E di there exists b E dj such that  (a, b) satisfies the constraint c, and 
for all b E dj there exists a E d~ such that  (a, b) satisfies the constraint c. A 
constraint satisfaction problem is arc-consistent iff all c~ E g are arc-consistent 
with respect to :D. An Arc-Consistency algorithm takes as input arguments a 
set of constraints to be satisfied and an initial finite integer domain for each 
variable. The algorithm either detects inconsistency (a variable was pruned to 
an empty domain), or prunes the domain of each variable in such a way that  
arc-consistency is achieved. 

Integration of evolution programs and constraint propagation implies coming 
up with a solution for chromosome representation, chromosome evaluation, and 
genet!c operators' design. 

C h r o m o s o m e  R e p r e s e n t a t i o n .  In order to take advantage of the arc- 
consistency techniques embedded in the constraint solver, a chromosome is an 
array of finite integer domains, that  is, a sub-space of the initial search space. 
Moreover, chromosomes are arc-consistent solutions (AC-solutions) generated by 
means of genetic operators based on an Arc-Consistency algorithm. 

C h r o m o s o m e  E v a l u a t i o n .  Searching for a solution using an Arc-Consis- 
tency algorithm involves evaluating the AC-solution generated, since the objec- 
tive function is assimilated to a domain variable whose domain is pruned while 
searching. The objective function f is defined by means of constraints, leading 
to an extended function f~ : N*  x . . .  x N* --+ N*.  f '  takes as arguments finite 
integer domains and returns a finite integer domain. A dual evaluation is used: 
a fi tness value is computed from the pruned domain of the variable to optimise, 
but, as we are dealing with non fully determined solutions, a feasible value is 
used to take into account the probability that  a feasible solution lies within the 
AC-solution. 

G e n e t i c  o p e r a t o r s  implement stochastic heuristic arc-consistent searches, 
taking previous AC-solutions as an input information to guide the search for a 
new AC-solution. Arc-consistency is achieved at each node of the search space, 
removing inconsistent values from the domain of the variables. Figure 1 shows 
the A t - c ros sove r  function. Given two AC-solutions, the AC-crossov@~ operator 
generates a new AC-solution. K (a random value between 1 and n) randomly 
chosen variables, Vperm[1] through Vperm[K], a r e  constrained to domains from first 
parent. Then, Arc-Consistency algorithm is invoked, pruning the search space. 
Remaining variables, Vperm[K+l] through Vper,~[n], are constrained one by one 
to domains from second parent, performing Arc-Consistency at each step. If 
inconsistency is detected at any step, variable's domain is left unchanged. 
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function AC-crossover( AC-SolI, AC-So12 ) : AC-solution; 

begin 

perm := random-permutation(l, n) ; 

If := random-int-between(1, n) ; 

for i = 1 to K do 

vpe~[i] : = AC-Soll [perm[i]] ; 

end-for; 
Perform Arc-Consistency, pruning search space 

for i = K+I to n do 

•perm[i] : =  AC-Sol2[perm[i]] ; 

P e r f o r m  Arc-Consistency,  pruning search space 
if Inconsistent then undo assigment; 

end-for; 

return generated AC-Solution 

end; 

Fig. 1. AC-Crossover 

3 P a r a l l e l i s a t i o n  M o d e l  

A global parallelisation of the presented constrained optimisation evolution pro- 
gram is expected to achieve high speedups, since the constraint propagation leads 
to coarse-grained genetic operators. Global parallelisation implies a centralised 
population. Shared memory architectures support an straight implementation 
of this approach, whereas distributed memory architectures may suffer from 
communications overhead. We propose a global parallelisation model for a dis- 
tributed memory architecture based on a virtual centralised population, physi- 
cally distributed among the processors in order to reduce communications. Tar- 
get architecture is any modern distributed memory multiprocessor that  allows 
fast asynchronous read/write access to remote processors' memory. This fea- 
ture places them in a middle point between traditional shared and distributed 
memory architectures. 

The data distribution model, appearing in Figure 2, can be summarised as 
follows: 

- The population is distributed among the processors in the system. Each pro- 
cessor owns a subset of the population and a local localisation table indicating 
a processor where non-local chromosomes can be found. 

- One processor of the parallel system is distinguished as master. This proces- 
sor behaves as any other, but it is also in charge of the sequential part of 
the algorithm, and keeps the shared operation table. 

- The master produces the operation table, which reflects chromosomes se- 
lected to survive, to be mutated, and to take part in crossover (global mat- 
ing). The operation table is broadcasted at the beginning of every generation, 
so each processor has a local copy of it. 

- Genetic operations are performed in parallel. Coordination is achieved by 
means of atomic test&swap on the master processor's operation table. A 
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Fig. 2. Data distribution model. Solid arrows represent fetching a remote chromosome. 
Dotted arrows represent mutual exclusion access to the shared operation table. 

processor may need to fetch (asynchronously) a chromosome from a remote 
processor's memory in order to perform the selected genetic operation. 

At the beginning of each generation, each processor owns a subset of the 
population formed by: 

- chromosomes generated by itself in the previous generation. 
- chromosomes from the previous population fetched from a remote processor 

but not replaced in the current population (steady-state approach). There- 
fore, a chromosome may be present at many processors. 

Figure 3 shows the algorithm executed in each processor. Initially a subset of 
the population is generated (line 1). Every time a new chromosome is generated, 
its evaluation (fitness and feasible values) are asynchronously written to the 
master's memory. Lines 2 to 14 enclose the main loop; each iteration produces a 
new generation. Synchronisation is needed at the beginning of each generation 
(line 3), in order to perform the global mating. The master establishes the ge- 
netic operations to generate the next population (line 5), filling the operation 
table, which is broadcasted to every processor (line 7). The loop in lines 8 to 12 
performs genetic operations (crossover or mutation) until there are no more left. 
A processor may perform any of the pending operations (line 10), so it may need 
to fetch chromosomes from a remote processors' memory (line 9). The resulting 
offspring is kept in local memory, but the evaluation values are asynchronously 
written to master's memory (line 11). 

Scheduling of pending operations is performed in a dynamic self-guided way, 
following a set of rules to minimise the number of chromosomes to be fetched 
from remote processors. Function Fetch_0perat  ion () (line 8), consults the local 
copy of the operation table and the localisation table, choosing an operation to 
perform. In order to minimise the need to fetch remote chromosomes, the local 
operation table is scanned selecting operations in the following order: 



275 

Procedure Parallel_AC-Evolution; 
begin 

1 Generate a subset of the initial population; 
2 while not terminationO do 
3 Synchronisation; 
4 if I-am-the-Master then 
5 Genera~e-Matings-and-Mutations(Operation_Table); 
6 end-if; 
7 Broadcasting of Operation_Table; 
8 while Fetch_Operation(Operation_Table, Localisation_Table) do 
9 Fetch parents, if necessary, updating Localisation_Table; 
10 Perform AC-Crossover (or AC-Mutation); 
11 Write fitness-feasible to Master; 
12 end-while; 
13 Update(Localisation_Table); 
14 end-while; 

end; 

Fig. 3. Parallel constrained evolution program. 

- Crossover of two local chromosomes. 
- Mutation of a local chromosome, or crossover of a local chromosome with a 

remote one. 
- Mutation or crossover of remote chromosomes. 

Once an operation is selected, the corresponding entry of the shared opera- 
tion table is tested and updated in mutual exclusion. If the selected operation 
has already been performed by another processor, the local operation table is 
updated, and another operation is chosen. Otherwise, the processor writes its 
unique processor number in the shared operation table. Once every operation 
has been performed, local copies of the operation table reflect which processor 
has generated the new chromosomes, allowing to properly update the localisa- 
tion table (line 13) for the next generation, discarding local copies of outdated 
chromosomes. 

Figure 4 shows an example of operation fetching. Processor 1 (P1) selects 
in the first place the crossover operation (XV) that will replace chromosome 
number 3, because both parents (chromosomes 3 and 8) are in its local memory. 
P1 successfully test and writes its processor number in the shared operation 
table. P2 behaves similarly with respect to operation 2. Once P1 has finished 
the crossover operation, it proceeds to select operation 1, as it owns one of the 
involved parents, writing its number in the shared operation table. P2 also tries 
to fetch operation 1, but it finds that operation has been already selected by 
processor 1, so P2 updates its local operation tale and proceeds to select a new 
operation. 

Figure 5 shows the time diagram for a generation. There is a sequential time 
fraction due to the generation and broadcast of the operation table (Ts). The 
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Fig. 4. Fetch Operation example. Circled numbers denote local chromosomes. Abbre- 
viation (genetic operation to perform) in brackets denotes initial value. Solid arrows 
denote successful test&write operations. Dotted arrows denote unsuccessful test&write 
operations on the shared operation table. 

time to perform a crossover in parallel (T=vp) is the sequential time (T=vs), in- 
creased with the time to select an operation (Tyo), the time to fetch the parents 
(Typ) (only if necessary), and the time to write the evaluation values in master's 
memory (T~oe). Policy to select operations favours choosing operations among 
local chromosomes, therefore it is expected to frequently avoid the overhead 
due to Tfp. Since genetic operators are search procedures, they can have a sig- 
nificantly different grain. The dynamic self-guided scheduling of the algorithm 
balances work load, thus reducing idle time Tid, introduced by the necessary 
synchronisation between generations. 

Linear speedups will be obtained if communications overhead --Tfo, Twe and 
Tfp-- is much smaller that genetic operation granularity (T~vs), and when the 
number of genetic operations per generation is much greater than the number 
of processors. In this situation Tid and Ts are much smaller than Tp. 

4 E x p e r i m e n t s  

Our system CSOS (Constrained Stochastic Optimisation System) implements 
the presented parallelisation model. Experiments have been carried out on a 
CRAY T3E multiprocessor, a distributed memory parallel system with a low 
latency and sustained bandwidth. Processing elements in the T3E are connected 
by a bi-directional 3-D torus network achieving communication rates of 480 
Mbytes/s. Parallel programming capabilities are extended through the "Cray 
Shared Memory Library" and MPI2, which allows fast asynchronous read/write 
access to remote processors' memory. 
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Fig. 5. Time diagram for a generation. T8 = sequential fraction (global selection for 
mating). Tp = parallel execution of genetic operators. T~.p = parallel genetic opera- 
tion. T~., = sequential genetic operation. TIo = fetch an operation from master. Tfp 
= fetch remote parents. T~ = write evaluation values to master. T~ = waiting for 
synchronisation. 

CSOS has been used to solve a number of real life constraint optimisation 
problems. Results obtained in two of them are reported: a VLSI signal channel 
routing problem, and a devices-to-FPGA mapping problem. 

Channel routing consists in assigning a pair layer/track to each net from a 
given set of connections such that no routing segments overlap each other. The 
objective function to be minimised is the sum of the lengths of routing paths 
for a given number of tracks per layer. A chromosome is 432 words long, and 
average time to perform a crossover is 35 ms. Sequential execution time is 23 
minutes. 

A multi-FPGA (Field Programmable Gate Array) is a programmable inte- 
grated circuit that can be programmed using the hardware description language 
VHDL. The goal is to map the VHDL program process network into a given 
multi-FPGA, observing size, adjacency, and capacity constraints, minimising 
the maximum occupation. A chromosome is 180 words long, and average time 
to perform a crossover is 300 ms. Sequential execution time is 60 minutes. 

Problem formulation has been programmed with a Constraint Logic Pro- 
gramming language over finite integer domains [7]. Therefore, problem con- 
straints, input data, and technology-dependent parameters can be flexibly mod- 
ified. 

Experiments have investigated the influence of the parameters of the genetic 
algorithm on the speedup. A particular issue of the model affecting the speedup 
-the ratio of chromosomes fetched from a remote processor- is also reported. 
Each reported result is the average of ten executions with a different random 
seed. 

Figure 6 shows speedup obtained for different parameter settings, all of them 
leading to the same number of genetic operations. The speedup is almost linear 
in all cases. This means that times due to communications overhead (Tfo, Tfp 
and Twe), described in Figure 5 are negligible in comparison with time to perform 
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Fig. 6. Speedup obtained for different parameter settings. PS = Population size. NG 
= No. of generations. XVR = Ratio of population replaced with offsprings. 

a crossover Txvs. A lower number of crossovers per generation (small population 
and/or low crossover ratio) implies a higher sequentiM fraction and a higher idle 
time thus reducing speedup. Therefore, the settings scaling better, (a), (c) and 
(e) for the Channel routing problem and (a) for the FPGA's problem, are those 
with both higher population size and ratio of population replaced. 
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Fig. 7. Percentage of chromosomes fetched from a remote processor, with and without 
the minimisation policy. 

Figure 7 illustrates the efficiency of the policy for selecting genetic operations, 
displaying the percentage of chromosomes that had to be fetched from a remote 
processor versus the number of processors. Solid line corresponds to the self- 
guided scheduling using the minimisation rules described in Section 3. Dotted 
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line corresponds to select the first pending genetic operation. Minimisation rules 
halves the percentage of chromosomes fetched from a remote processor. 

5 Conclusions 

We have developed a parallel execution model for a non-traditional evolution- 
ary computation method, which integrates constraint propagation techniques 
and evolution programs. The system, aimed to solve constrained combinatorial 
optimisation problems over finite integer domains, is appropriate for paralleli- 
sation due to the coarse-grain of genetic operations. The model is devoted to 
run on modern distributed memory platforms, which provide communications 
times close to those of shared memory architectures. This characteristic justifies 
working with a single virtual population, though distributed across the system. 

The parallel version of our system CSOS, which implements the proposed 
model, has been ported to a CRAY T3E, a distributed memory parallel mul- 
tiprocessor. Two complex constrained optimisation problems over finite integer 
domains, coming from the field of hardware design, have been used to test the effi- 
ciency of the parallel model. Linear speedups have been obtained when increasing 
the number of processors, thus proving our hypothesis that communication over- 
head is negligible versus genetic operation execution times. Measurements have 
been taken in order to check the effectiveness of genetic operations scheduling 
policy. Results reveal that the percentage of chromosomes fetched from remote 
processors diminishes by half using our policy. 
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