
Evolutionary Parsing for a Probabilistic Context

Free Grammar

L. Araujo

Dpto. Sistemas Informáticos y Programación. Universidad Complutense de Madrid.
Spain. lurdes@sip.ucm.es

Abstract. Classic parsing methods are based on complete search tech-
niques to find the different interpretations of a sentence. However, the
size of the search space increases exponentially with the length of the
sentence or text to be parsed, so that exhaustive search methods can fail
to reach a solution in a reasonable time. Nevertheless, large problems can
be solved approximately by some kind of stochastic techniques, which do
not guarantee the optimum value, but allow adjusting the probability of
error by increasing the number of points explored. Genetic Algorithms
are among such techniques. This paper describes a probabilistic natural
language parser based on a genetic algorithm. The algorithm works with
a population of possible parsings for a given sentence and grammar,
which represent the chromosomes. The algorithm produces successive
generations of individuals, computing their “fitness” at each step and se-
lecting the best of them when the termination condition is reached. The
paper deals with the main issues arising in the algorithm: chromosome
representation and evaluation, selection and replacement strategies, and
design of genetic operators for crossover and mutation. The model has
been implemented, and the results obtained for a number of sentences
are presented.

keywords: Evolutionary programming, Parsing, Probabilistic Grammar

1 Introduction

Classic parsing methods are based on complete search techniques to find the
different interpretations of a sentence. However, experiments on human parsing
suggest that people do not perform a complete search of the grammar while
parsing. On the contrary, human parsing seems to be closer to a heuristic pro-
cess with some random component. This suggest exploring alternative search
methods in order to improve the efficiency. Another central point when parsing
is the need of selecting the “most” correct parsing from the multitude of pos-
sible parsings consistent with the grammar. In such a situation, some kind of
disambiguation is required. Statistical parsing helps to tackle the previous ques-
tions, that is, avoids an exhaustive search and provides a way of dealing with
disambiguation.

Stochastic grammars [1], obtained by supplementing the elements of alge-
braic grammars with probabilities, represent an important part of the statistical
methods in computational linguistics. They have allowed important advances in



areas such as disambiguation and error correction. Another stochastic methods
are genetic algorithms (GAs). They have been already applied to different is-
sues of natural language processing. Davis and Dunning [3] use them for query
translation in a multi-lingual information retrieval system. GAs have also been
applied to the inference of context-free grammars [2]. Wyard [6] devised a genetic
algorithm for the language of correctly balanced nested parentheses, while Smith
and Witten [5] proposed a genetic algorithm for the induction of non recursive
s-expressions.

This paper presents a stochastic parser based on a genetic algorithm which
works with a population of possible parsings. The algorithm produces successive
generations of individuals, computing their “fitness” at each step and selecting
the best of them when the termination condition arises. Apart from the char-
acteristic efficiency of these stochastic methods, the nature of the generation of
solutions in a genetic algorithm brings the advantages of statistical approaches.

The rest of the paper proceeds as follows: Section 2 describes the evolutionary
parser, presenting the main elements of the genetic algorithm; section 3 presents
and discusses the experimental results, and section 4 draws the main conclusions
of this work.

2 Evolutionary Parsing

The syntactic structure of a sentence is a necessary previous step to determine
its meaning. Such structures assign a syntactic category (verb, noun, etc) to
each word in the sentence and specify how these categories are clustered to
form higher level categories (np, vp, etc) until building the whole sentence. The
grammar specifies the permitted structures in a language. Context free gram-
mars (GFGs), whose rules present a single symbol on the left-hand-side, are
a sufficiently powerful formalism to describe most of the structure in natural
language, while at the same time is sufficiently restricted as to allow efficient
parsing.

Parsing according to a grammar amounts to assigning one or more structures
to a given sentence of the language the grammar defines. If there are sentences
with more than one structure, as in natural language, the grammar is ambiguous.
Parsing can be sought as a search process that looks for correct structures for
the input sentence. Besides, if we can establish some kind of preference between
the set of correct structures, the process can be regarded as an optimization
one. This suggests considering evolutionary programming techniques, which are
acknowledged to be practical search and optimization methods [4].

Probabilistic grammars [1] offer a way to establish preferences between pars-
ings. In a probabilistic CFG a weight is assigned to each rule in the grammar.
The probability of each parsing is the product of the probabilities of all the
rules used in the parsing. Probabilistic grammars not only offer a way to deal
with issues such as ambiguity or ungrammaticality [1], but can also lead to an
improvement in performance. Genetic algorithms and probabilistic grammars
complement each other, for at least two reasons:



a) Large populations in a GA lead to a higher diversity at the expense of slowing
down the convergence process, while higher percentages in the applications
of genetic operators hasten the process but increase the selective pressure.
The use of probabilistic grammars help to accelerate the convergence pro-
cess. Although the selective pressure is increased for individuals composed
of grammar rules of high probability, this will lead to better individuals for
most sentences (since they will correspond to the most probable rules). Thus,
in general there will not be a premature convergence to a wrong individual.

b) The nature of the GAs, which favours the exploration of new areas of the
search space, helps to reach a correct result, even if the sentence to parse
requires applying rules of low probability.

According to the previous considerations, a probabilistic GA has been designed,
in which the parsings that compose the population correspond to a probabilistic
CFG. When the algorithm finishes with correct parsings, the one for which the
product of the probabilities of its genes is the largest is chosen. This is the answer
of the algorithm for the most probable parsing of the sentence.

2.1 Chromosome Representation

Our system chromosomes represent parsings for the input sentence, correspond-
ing to a fixed context-free grammar. The input sentence is given as a sequence
of words with their set of categories attached to them (if they belong to several
categories every of them is added). Nevertheless, this information could be easily
obtained from a lexicon in a preprocessing step. Let us consider a simple exam-
ple. The sentence “the man sings a song” will be given as the(Det) man(Noun)
sings(Verb) a(Det) song(Noun).

A chromosome is represented as a data structure containing the following
information:

– Fitness of the chromosome.
– A list of genes, which represents the parsing of different sets of words in the

sentence.
– The number of genes in the chromosome.
– The depth of the parsing tree.

Each gene represents the parsing of a consecutive set of words in the sentence.
If this parsing involves no terminal symbols, the parsing of the subsequent par-
titions of the set of words is given in later genes. Accordingly, the information
contained in a gene is the following:

– The sequence of words in the sentence to be analyzed by the gene. It is
represented by two data: the position in the sentence of the first word in the
sequence, and the number of words of the sequence.

– The rule of the grammar used to parse the words in the gene.
– If the right hand side of the rule contains no terminal symbols, the gene also

stores the list of references to the genes corresponding to the parsing of these
symbols.



NP: The man

VP: sings a song

NP -> Det,NP:

Det: The

NP: man

NP -> Noun

Noun: man

VP -> Verb, NP:

Verb: sings

NP: a song

NP -> NP, AP

NP -> Noun

Noun: a

AP -> Adj

Adj: song

NP: The man

VP: sings a song

NP -> Adj,NP:

Adj: The

NP: man

NP -> Noun

Noun: man

VP -> Verb, PP:

Verb: sings

PP: a song

PP -> Prep, NP

Prep: a

NP -> Noun

Noun: song

Chromosome 1 Chromosome 2

Fig. 1. Possible chromosomes for the sentence The man sings a song. NP stands for
nominal phrase, V P for verb phrase, Det for determiner, Adj for adjective, PP for
prepositional phrase and AP for adjective phrase.

– The depth of the node corresponding to the gene in the parsing tree. It will
be used in the evaluation function.

Figure 1 presents some possible chromosomes for the sentence of the example.

Initial Population The initial population consists of PS randomly generated
(according to the probabilities of the different rules) individuals. The steps for
the creation of chromosomes in the initial population are the following:

– The set of words in the sentence is randomly partitioned, making sure that
there is at least one verb in the second part, which corresponds to the main
V P .

– The set of words corresponding to the NP is parsed by randomly generating
(consistently with the assigned probabilities) any of the possible NP rules.
The same is done for generating the parsing of the V P with the V P rules.
The process is improved by enforcing the application of those rules able to
parse the right number of words of the gene.

– If the rules applied contain some non terminal symbol in its right hand side,
the parsing process is applied to the set of words which are not yet assigned
a category.

– The process continues until there are no terminal symbols left pending to be
parsed.



2.2 Fitness: Chromosome Evaluation

Adaptation of individuals is revised after each new generation, testing the ability
of every chromosome to parse the objective sentence. The evaluation of individ-
uals is a crucial point in the evolutionary algorithms since the opportunities of
an individual for survival depends on its fitness.

Fitness is computed as

fitness =
Number of coherent genes −

∑
i∈incoherent genes

penalization
depth(i)

Total number of genes

This formula is based on the relative number of coherent genes. A gene will be
considered coherent if

a) it corresponds to a rule whose right hand side is only composed by terminal
symbols, and they correspond to the categories of the words to be parsed by
the rule.

b) it corresponds to a rule with non-terminal symbols in its right hand side and
each of them is parsed by a coherent gene.

The formula takes into account the relative relevance of the genes: the higher in
the parsing tree is the node corresponding to an incoherent gene, the worse is the
parsing. Thus the fitness formula presents a penalization factor which decreases
with the depth of the gene.

2.3 Genetic Operators

Chromosomes in the population of subsequent generations which did not appear
in the previous one are created by means of two genetic operators: crossover
and mutation. The crossover operator combines two parsings to generate a new
one; mutation creates a new parsing by replacing a randomly selected gene in a
previous chromosome. The rates of crossovers and mutations performed at each
step are input parameters. The efficiency of parsing is very sensitive to them. At
each generation a number of chromosomes equal to the number of offsprings is
selected to be replaced. The selection is performed with respect to the relative
fitness of the individuals: a chromosome with a worse than average fitness has
higher chances to be selected for replacement. On the contrary, chromosomes
adapted over the average have higher probability to be selected for reproduction.

Reproduction Crossover operator generates a new chromosome that is added
to the population in the new generation. The part of one parent after a point
randomly selected is exchanged with the corresponding part of the other parent
to produce two offsprings, under the constraint that the genes exchanged corre-
spond to the same type of parsing symbol (NP, VP, etc) in order to avoid wrong
references of previous genes in the chromosome. Of course those exchanged which
produce parsings inconsistent with the number of words in the sentence must be
avoided. Therefore, the crossover operation performs the following steps:



– Select two parent chromosomes, C1 and C2.

– Randomly select a word from the input sentence.
– Identify the inner most gene to which the selected word corresponds in each

parent chromosome.

– If the genes correspond to different sets of words, the next gene in the inner
most order is selected. This process continues until the sequences of words
whose parsings are to be exchanged are the same, or until the main NP or
VP are reached.

– If the two selected genes parse the same sequence of words the exchange is
performed.

– If the process to select genes lead to the main NP or VP, and the sequence of
words do not match yet, the exchange can not be performed. In this case a
new procedure is followed: in each parent one of the two halves is maintained
while the other one is randomly generated to produce a parsing consistent
with the number of words of the sentence. This produces four offsprings, out
of which the best is selected.

– Finally, the offspring chromosome is added to the population.

Mutation Selection for mutation is done in inverse proportion to the fitness
of a chromosome. Mutation operation changes the parsing of some randomly
chosen sequence of words. The mutation operation performs the following steps:

– A gene is randomly chosen from the chromosome.
– The parsing of the selected gene, as well as every gene corresponding to its

decomposition, are erased.

– A new parsing is generated for the selected gene.

3 Experimental Results

The algorithm has been implemented using C language and run on a Pentium II
processor. In order to evaluate its performance we have considered the parsing
of the sentences appearing in Table 1. The average length of the sentences is
around 10 words. However, they present different complexities for the parsing,
mainly the length and the number of subordinate phrases.

1 Jack(noun) regretted(verb) that(wh) he(pro) ate(verb) the(det) whole(adj)
thing(noun)

2 The(det) man(noun) who(wh) gave(verb) Bill(noun) the(det) money(noun)
drives(verb) a(det) big(adj) car(noun)

3 The(det) man(noun) who(wh) lives(verb) in(prep) the(det) red(adj)
house(noun) saw(verb) the(det) thieves(noun) in(prep) the(det) bank(noun)

Table 1. Sentences used in the parsing experiments.



The results reported in this section have been obtained as the average of
five runnings with different seeds. Results show that in most cases the correct
parsing is reached in a small number of steps, less than 10 for populations of
above 300 individuals.

Results obtained with a deterministic context free grammar are compared
to the ones obtained using a probabilistic grammar. Figure 2 shows the results
obtained for the sentences when using rates of crossover of 50% and one of
mutation of 20%. Results clearly improve in all the cases by using the prob-
abilistic grammar. The first observation is that while the deterministic CFG
produces irregular convergence processes, the probabilistic one leads to highly
regular processes as the population size grows. This indicates a higher robust-
ness of the genetic algorithm. The difference between the results from the two
kinds of grammar increases with the complexity of the sentence. Thus while the
deterministic CFG leads to quick convergence for the sentence 1, the process is
quite irregular for sentences 2 and 3. Another observation is that a threshold
population size is required to achieve convergence.

100 300 500 700 900
Population Size

0

100

200

300

400

500

Ite
ra

tio
n 

S
te

ps

Sentence 1 (P.)
Sentence 1 (D.)
Sentence 2 (P.)
Sentence 2 (D.)
Sentence 3 (P.)
Sentence 3 (D.)

Fig. 2. Number of iteration required to reach the correct parsing with a probabilistic
grammar (P) and a deterministic grammar (D).

The most relevant GA parameters have been studied (data not shown). It is
clear that the population diversity and the selection pressure are related to the
population size. If the population size is too small the genetic algorithm will con-
verge too quickly to a bad result (all individuals correspond to similar incorrect
parsings), but if it is too large the GA will take too long to converge. Results
show that the behavior is quite different for each sentence: the higher the “sen-



tence complexity”, the larger the population size required to reach the correct
parsing in a reasonable number of steps. The sentence complexity depends on
its length and on the number of subordinate phrases it contains. Besides, as the
population size increases, higher rates of crossover and mutation are required to
increase the efficiency of the algorithm.

4 Conclusions

This paper presents a genetic algorithm that adapts a population of possible
parsings for a given input sentence and a given grammar. Genetic algorithms
allow a statistical treatment of the parsing process, providing at the same time
the typical efficiency of stochastic methods.

Results from a number of tests indicate that the GA is a robust approach for
parsing positive examples of natural language. A number of issues of the GA have
been tackled, such as the design of the genetic operators and a study of the GA
parameters. The tests indicate that the GA parameters need to be suitable for the
input sentence complexity. The more complex the sentence (length and number
of subordinate phrases), the larger the population size required to quickly reach
a correct parsing.

Probabilistic grammars and genetic algorithms have been shown to comple-
ment each other. The use of a probabilist context free grammar instead of a
deterministic one for the generation of the population of parsings in the algo-
rithm has been investigated. Results obtained for these experiments show a clear
improvement in the performance. For short sentences, though, greedy parser al-
gorithm can be at least as fast. Nevertheless, the method proposed herein also
allows dealing with problems such as ambiguity or ungrammaticality, and are
expected to be advantageous for parsing long texts. Work along this line is cur-
rently in process.

References

1. E. Charniak. Statistical Language Learning. MIT press, 1993.
2. Paul Cohen and Ed Feigenbaum. Grammatical inference. In HandBook of Artificial

Intelligence, volume 3, pages 494–511. Pitman Books Limited, 1984.
3. T. Dunning M. Davis. Query translation using evolutionary programming for multi-

lingual information retrieval II. In Proc. of the Fifth Annual Conf. on Evolutionary

Programming. Evolutionary Programming Society, 1996.
4. Z. Michalewicz. Genetic algorithms + Data Structures = Evolution Programs.

Springer-Verlag, 2nd edition, 1994.
5. I.H. Witten T.C. Smith. A genetic algorithm for the induction of natural language

grammars. In Proc. IJCAI-95 Workshop on New Approaches to Learning Natural

Language, pages 17–24, Montreal, Canada, 1995.
6. P. Wyard. Context free grammar induction using genetic algorithms. In Proc. of

the 4th Int. Conf. on Genetic Algorithms, pages 514–518, 1991.


